On a Leibnitz type formula for fractional derivatives

被引:5
作者
Mitrovic, Darko [1 ]
机构
[1] Univ Montenegro, Fac Math, Podgorica 81000, Montenegro
关键词
Leibnitz rule; fractional derivatives; MODEL;
D O I
10.2298/FIL1306141M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that L-2-norm of fractional derivatives of product of two functions can be estimated by L-2 and L-1-norms of derivatives of the functions themselves.
引用
收藏
页码:1141 / 1146
页数:6
相关论文
共 16 条
[1]   Non-uniqueness of weak solutions for the fractal Burgers equation [J].
Alibaud, Nathael ;
Andreianov, Boris .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04) :997-1016
[2]  
[Anonymous], 1970, MATH USSR SBORNIK, DOI DOI 10.1070/SM1970V010N02ABEH002156
[3]  
Atanackovic T., VARIATIONAL PROBLEMS
[4]   On a model of viscoelastic rod in unilateral contact with a rigid wall [J].
Atanackovic, TM ;
Oparnica, L ;
Pilipovic, S .
IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (01) :1-13
[5]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[6]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[7]   The discontinuous Galerkin method for fractional degenerate convection-diffusion equations [J].
Cifani, Simone ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
BIT NUMERICAL MATHEMATICS, 2011, 51 (04) :809-844
[8]  
Espedal M.S., 2000, Filtration in Porous Media and Industrial Application, P9
[9]   Waves in viscoelastic media described by a linear fractional model [J].
Konjik, Sanja ;
Oparnica, Ljubica ;
Zorica, Dusan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (4-5) :283-291
[10]  
Lazar M, 2012, DYNAM PART DIFFER EQ, V9, P239