ON THE ANALYTIC CAPACITY AND CURVATURE OF SOME CANTOR SETS WITH NON-σ-FINITE LENGTH

被引:28
作者
Mattila, Pertti [1 ]
机构
[1] Univ Jyvaskyla, Dept Math, FIN-40351 Jyvaskyla, Finland
关键词
D O I
10.5565/PUBLMAT_40196_12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying integral(1)(0) r(-3) h(r)(2) dr < infinity, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov's identity relating it to the Cauchy kernel. We shall also prove some related more general results.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 13 条
[1]  
Christ M., 1990, Colloq. Math, V60, P601, DOI [10.4064/cm-60-61-2-601-628, DOI 10.4064/CM-60-61-2-601-628]
[2]  
CHRIST M, 1990, REGIONAL C SERIES MA, V77
[3]  
DAVID G, 1991, LECT NOTES MATH, V1465, P1
[4]  
EIDERMAN VY, 1992, ST PETERSB MATH J, V3, P1367
[5]   POSITIVE LENGTH BUT ZERO ANALYTIC CAPACITY [J].
GARNETT, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (04) :696-&
[6]  
Garnett J, 1972, Lecture Notes in Mathematics, V297
[7]  
Ivanov L. D., 1994, LECT NOTES MATH, V1574, P150
[8]  
Ivanov L. D., 1975, NAUKA
[9]  
Journe J.-L., 1983, LECT NOTES MATH, V994
[10]  
Mattila P., 1995, Fractals and rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics, V44