Black-Box Modelling of a DC-DC Buck Converter Based on a Recurrent Neural Network

被引:22
作者
Rojas-Duenas, Gabriel [1 ]
Riba, Jordi-Roger [1 ]
Kahalerras, Khaled [2 ]
Moreno-Eguilaz, Manuel [1 ]
Kadechkar, Akash [1 ]
Gomez-Pau, Alvaro [1 ]
机构
[1] Univ Politecn Cataluna, Terrassa, Spain
[2] Airbus Operat SAS, Toulouse, France
来源
2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT) | 2020年
关键词
neural network; power converter; training; prediction; system identification; black-box model; POWER CONVERTERS; IDENTIFICATION;
D O I
10.1109/ICIT45562.2020.9067098
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial neural networks allow the identification of black-box models. This paper proposes a method aimed at replicating the static and dynamic behavior of a DC-DC power converter based on a recurrent nonlinear autoregressive exogenous neural network. The method proposed in this work applies an algorithm that trains a neural network based on the inputs and outputs (currents and voltages) of a Buck converter. The approach is validated by means of simulated data of a realistic nonsynchronous Buck converter model programmed in Simulink and by means of experimental results. The predictions made by the neural network are compared to the actual outputs of the system, to determine the accuracy of the method, thus validating the proposed approach. Both simulation and experimental results show the feasibility and accuracy of the proposed black-box approach.
引用
收藏
页码:456 / 461
页数:6
相关论文
共 12 条
  • [1] Acuna G., 2012, The 2012 International Joint Conference on Neural Networks (IJCNN), P1, DOI DOI 10.1109/IJCNN.2012.6252476
  • [2] Balakrishnan H, 2018, IEEE INT POWER ELEC, P242, DOI 10.1109/EPEPEMC.2018.8521981
  • [3] A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation
    Boussaada, Zina
    Curea, Octavian
    Remaci, Ahmed
    Camblong, Haritza
    Bellaaj, Najiba Mrabet
    [J]. ENERGIES, 2018, 11 (03):
  • [4] Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model
    Cadenas, Erasmo
    Rivera, Wilfrido
    Campos-Amezcua, Rafael
    Heard, Christopher
    [J]. ENERGIES, 2016, 9 (02):
  • [5] Modeling Electronic Power Converters in Smart DC Microgrids An-Overview
    Frances, Airan
    Asensi, Rafael
    Garcia, Oscar
    Prieto, Roberto
    Uceda, Javier
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (06) : 6274 - 6287
  • [6] Selection of Proper Neural Network Sizes and Architectures-A Comparative Study
    Hunter, David
    Yu, Hao
    Pukish, Michael S., III
    Kolbusz, Janusz
    Wilamowski, Bogdan M.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2012, 8 (02) : 228 - 240
  • [7] Grey-box model for pipe temperature based on linear regression
    Kicsiny, Richard
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 13 - 20
  • [8] Identification and Prediction of Dynamic Systems Using an Interactively Recurrent Self-Evolving Fuzzy Neural Network
    Lin, Yang-Yin
    Chang, Jyh-Yeong
    Lin, Chin-Teng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (02) : 310 - 321
  • [9] Prakash A., 2017, BENEFITS LOW INDUCTI
  • [10] Identification of nonlinear systems using NARMAX model
    Rahrooh, Alireza
    Shepard, Scott
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1198 - E1202