Preservation of nonoscillatory behavior of solutions of second-order delay differential equations under impulsive perturbations

被引:6
作者
Peng, MS [1 ]
Ge, WG
Xu, QL
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] Beijing Inst Technol, Dept Math Appl, Beijing 100081, Peoples R China
[3] Yiyang Teachers Coll, Dept Math, Yiyang 413049, Peoples R China
关键词
impulse; delay differential equation; existence and uniqueness; nonoscillation;
D O I
10.1016/S0893-9659(01)00119-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We offer new criteria for the preservation of nonoscillatory behavior of solutions of the delay differential equation of second-order x"(t) + p(t)x(t - tau) = 0, t greater than or equal to t(0) under impulsive perturbations. A technique of direct analysis in this paper is developed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 17 条
[1]  
Bainov D., 1989, SYSTEMS IMPULSES EFF
[2]  
Bainov D. D., 1996, APPL ANAL, V63, P287
[3]  
BAINOV DD, 1999, J APPL MATH STOCHAST, V12, P461
[4]  
Bainov DD., 1997, APPL ANAL, V64, P57, DOI [10.1080/00036819708840523, DOI 10.1080/00036819708840523]
[5]   Oscillation of a second order impulsive linear delay differential equation [J].
Berezansky, L ;
Braverman, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) :276-300
[6]   THE PERSISTENCE OF NONOSCILLATORY SOLUTIONS OF DELAY-DIFFERENTIAL EQUATIONS UNDER IMPULSIVE PERTURBATIONS [J].
CHEN, MP ;
YU, JS ;
SHEN, JH .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (08) :1-6
[7]  
Chen YC, 1997, J MATH ANAL APPL, V210, P150
[8]   Nonoscillation of first order impulse differential equations with delay [J].
Domoshnitsky, A ;
Drakhlin, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 206 (01) :254-269
[9]   ON DELAY DIFFERENTIAL-EQUATIONS WITH IMPULSES [J].
GOPALSAMY, K ;
ZHANG, BG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (01) :110-122
[10]  
Gy??ri I., 1991, OSCILLATION THEORY D