Multi-core Cable Fault Diagnosis using Cluster Time-Frequency Domain Reflectometry

被引:0
|
作者
Lee, Chun-Kwon [1 ]
Shin, Yong-June [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, 50 Yonsei-Ro, Seoul, South Korea
来源
2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT | 2018年
关键词
control and instrumentation cable; fault diagnosis; reflectometry; time-frequency analysis; crosstalk; K-means clustering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Guaranteeing the integrity and functionality of the control and instrumentation (C &I) cable system is essential in ensuring safe nuclear power plant (NPP) operation. When a fault occurs in a multi-core cable, it not only affects the signals of faulty lines but in fact, disturbs the rest as well due to crosstalk and noise interference. Therefore, this results in C&I signal errors in NPP operation and further leads to a rise in concern regarding the NPP operation. Thus, it is necessary for diagnostic technologies of multi-core C&I cables to classify the faulty line and detect the fault to assure the safety and reliability of NPP operation. We propose a diagnostic method that detects the fault location and faulty line in multi-core C&I cable using a clustering algorithm based on TFDR results. The faulty line detection clustering algorithm uses TFDR cross-correlation and phase synchrony results as input feature data altogether which can detect the faulty line and identify the fault point successfully. The proposed clustering algorithm is verified by experiments with two possible fault scenarios in NPP operation.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [1] Fault Detection in Multi-Core C&I Cable via Machine Learning Based Time-Frequency Domain Reflectometry
    Lee, Chun-Kwon
    Chang, Seung Jin
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [2] Soft fault detection in cables using the cluster time-frequency domain reflectometry
    1600, Institute of Electrical and Electronics Engineers Inc., United States (02): : 54 - 69
  • [3] Offline Fault Localization Technique on HVDC Submarine Cable via Time-Frequency Domain Reflectometry
    Kwon, Gu-Young
    Lee, Chun-Kwon
    Lee, Geon Seok
    Lee, Yeong Ho
    Chang, Seung Jin
    Jung, Chae-Kyun
    Kang, Ji-Won
    Shin, Yong-June
    IEEE TRANSACTIONS ON POWER DELIVERY, 2017, 32 (03) : 1626 - 1635
  • [4] Classification of Faults in Multicore Cable via Time-Frequency Domain Reflectometry
    Bang, Su Sik
    Shin, Yong-June
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4163 - 4171
  • [5] Industrial Applications of Cable Diagnostics and Monitoring Cables via Time-Frequency Domain Reflectometry
    Lee, Hyeong Min
    Lee, Geon Seok
    Kwon, Gu-Young
    Bang, Su Sik
    Shin, Yong-June
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1082 - 1091
  • [6] A Statistical Approach in Time-Frequency Domain Reflectometry for Enhanced Fault Detection
    Ji, Gyeong Hwan
    Lee, Geon Seok
    Lee, Chun-Kwon
    Kwon, Gu-Young
    Lee, Yeong Ho
    Shin, Yong-June
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [7] Research on Fault Location of High Temperature Superconducting Cable Based on Time-frequency Domain Reflectometry
    Wang Y.
    Yao Z.
    Xie W.
    Wu J.
    Han Y.
    Yin Y.
    Zhao G.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (05): : 1540 - 1546
  • [8] A Fault Diagnosis Method Based on Time Domain Reflectometry for Power Cable
    Dong Haidi
    Gao Yingbin
    Bo, She
    Yuan Shengzhi
    Kai, Jin
    Jing, Li
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 2461 - 2466
  • [9] Fault Detection and Localization of Shielded Cable via Optimal Detection of Time-Frequency-Domain Reflectometry
    Lim, Hobin
    Kwon, Gu-Young
    Shin, Yong-June
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 (70)
  • [10] Analysis and Diagnosis of Shielded Cable Faults Based on Finite-Element Method and Time-Reversal Time-Frequency Domain Reflectometry
    Hua, Xu
    Wang, Li
    Zhang, Yaojia
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 4205 - 4214