A linear viscoelastic relaxation-contact model of a flat fractal surface: a Maxwell-type medium

被引:7
作者
Alabed, Taher A. [1 ]
Abuzeid, Osama M. [1 ]
Barghash, Mahmoud [2 ]
机构
[1] Univ Jordan, Dept Mech Engn, Amman 11942, Jordan
[2] Univ Jordan, Dept Ind Engn, Amman 11942, Jordan
关键词
contact of rough surfaces; fractal; viscoelastic; relaxation; Cantor set; Maxwell model;
D O I
10.1007/s00170-007-1234-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a continuous relaxation model for the contact of a viscoelastic material with a nominally flat surface. In this model a load-deflection relationship of the viscoelastic punch surface is obtained. The proposed model assumes that the surface material behaves as a linear Maxwell viscoelastic material. The roughness of the punch surface is assumed to be fractal, where the Cantor set theory is utilized to model the roughness. An asymptotic power law is obtained, reflecting the relaxed force with the applied displacement. This law is valid only when the approach is about the same size as the surface roughness. The model provides an analytical solution for the case when the deformation is linear viscoelastic. The modified analytical model shows good agreement when compared with the experimental results obtained by (Handzel-Powierza et al. in Wear 154:115-124, 1992).
引用
收藏
页码:423 / 430
页数:8
相关论文
共 37 条
[1]   Elastic-plastic contact model for rough surfaces based on plastic asperity concept [J].
Abdo, J ;
Farhang, K .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (04) :495-506
[2]  
ABUZEID O, 2003, DIRASAT, V30, P22
[3]  
ABUZEID O, 2006, P 7 INT C PROD ENG D, P636
[4]  
Abuzeid O. M., 2003, Journal of Quality in Maintenance Engineering, V9, P202, DOI 10.1108/13552510310482424
[5]   A linear viscoelastic creep-contact model of a flat fractal surface: Kelvin-Voigt medium [J].
Abuzeid, OM .
INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2004, 56 (06) :334-340
[6]   Abstract evolution equations for viscoelastic frictional contact problems [J].
Awbi, B ;
Rochdi, M ;
Sofonea, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (02) :218-235
[7]   Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces [J].
Bakolas, V .
WEAR, 2003, 254 (5-6) :546-554
[8]  
BORODICH FM, 1992, PMM-J APPL MATH MEC+, V56, P681, DOI 10.1016/0021-8928(92)90054-C
[9]  
Bucher F, 2004, ARCH APPL MECH, V73, P561, DOI [10.1007/s00419-003-0307-4, 10.1007/S00419-003-0307-4]
[10]   Experimental investigation of the contact mechanics of rough fractal surfaces [J].
Buzio, R ;
Malyska, K ;
Rymuza, Z ;
Boragno, C ;
Biscarini, F ;
De Mongeot, FB ;
Valbusa, U .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (01) :27-31