The equal coefficients quadrature rules and their numerical improvement

被引:1
|
作者
Eslahchi, MR
Dehghan, M
Masjed-Jamei, M
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran, Iran
[2] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[3] Minist Sci Res & Technol, Sanjesh Org, Ctr Res & Studies, Tehran, Iran
关键词
equal coefficient quadrature rules; numerical integration methods; precision degree; the method of undetermined coefficient; the method of solving nonlinear system;
D O I
10.1016/j.amc.2005.01.130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the quadrature rules is the "Equal coefficients quadrature rules" represented by integral(h)(a) w(x)f(x)dx similar or equal to C-''Sigma(n)(i=1)f(x(i)) a where C-n is a constant number and w(x) is a weight function on [a, b]. In this work, we show that the precisian degree of above formula can be increased by taking the upper and lower bounds of the integration formula as unknowns. This causes to numerically be extended the monomial space {1, x,..., x(n)} to {1, x,..., x(n+2).} We use a matrix proof to show that the resulting nonlinear system for the basis f(x) = x(j), j = 0,...,n + 2 has no analytic solution. Thus, we solve this system numerically to find unknowns x(1),x(2),x(n), C-n, a and b. Finally, some examples will be given to show the numerical superiority of the new developed method. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1331 / 1351
页数:21
相关论文
共 50 条
  • [41] Efficient Quadrature Rules for Numerical Integration Based on Linear Legendre Multi-Wavelets
    Alimin, Nur Neesha
    Rasedee, Ahmad Fadly Nurullah
    Sathar, Mohammad Hasan Abdul
    Ahmedov, Anvarjon A.
    Asbullah, Muhammad Asyraf
    2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [42] A new inequality of Ostrowski-Gruss type and applications to some numerical quadrature rules
    Niezgoda, Marek
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (03) : 589 - 596
  • [43] Quadrature rules for rational functions
    Walter Gautschi
    Laura Gori
    M. Laura Lo Cascio
    Numerische Mathematik, 2000, 86 : 617 - 633
  • [44] A probabilistic model for quadrature rules
    Masjed-Jamei, Mohammad
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1520 - 1526
  • [45] Associated symmetric quadrature rules
    Ranga, AS
    deAndrade, EXL
    Phillips, GM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (02) : 175 - 183
  • [46] EQUAL WEIGHT QUADRATURE ON INFINITE INTERVALS
    KAHANER, DK
    ULLMAN, JL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (01) : 75 - &
  • [47] Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems
    Temirgaliev N.
    Kudaibergenov S.S.
    Shomanova A.A.
    Russian Mathematics, 2010, 54 (3) : 45 - 62
  • [48] COEFFICIENTS OF OPTIMAL QUADRATURE FORMULAS
    SOBOLEV, SL
    DOKLADY AKADEMII NAUK SSSR, 1977, 235 (01): : 34 - 37
  • [49] ON QUADRATURE-FORMULAS WITH EQUAL WEIGHTS
    FORSTER, KJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T77 - T79
  • [50] Quadrature formulas for Fourier coefficients
    Bojanov, Borislav
    Petrova, Guergana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 378 - 391