Quantum phase transition of a two-dimensional Rydberg atom array in an optical cavity

被引:2
作者
An, Gao-Qi [1 ]
Zhou, Yan-Hua [1 ]
Wang, Tao [1 ,2 ]
Zhang, Xue-Feng [1 ,3 ]
机构
[1] Chongqing Univ, Dept Phys, Chongqing Key Lab Strongly Coupled Phys, Chongqing 401331, Peoples R China
[2] Chongqing Univ Liyang, Inst Smart City, Ctr Modern Phys, Liyang 213300, Peoples R China
[3] Chongqing Univ, Ctr Quantum Mat & Devices, Chongqing 401331, Peoples R China
基金
美国国家科学基金会;
关键词
GAS;
D O I
10.1103/PhysRevB.106.134506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the two-dimensional Rydberg atom array in an optical cavity with the help of a variational method and large-scale quantum Monte Carlo simulations. The strong dipole-dipole interactions between Rydberg atoms can make the system exhibit a crystal structure, and the coupling between a two-level atom and a cavity photon mode can result in the formation of a polariton. The interplay between them provides a rich quantum phase diagram including the Mott, solid-1/2, superradiant, and superradiant solid (SRS) phases. As a two-order coexisted phase, the superradiant solid breaks both translational and U(1) symmetries. Different from the fragile SRS phase in a one-dimensional system [Zhang et al., Phys. Rev. Lett. 110, 090402 (2013)], the SRS phase stays in a larger parameter region. Thus, it is more feasible to detect a SRS phase and corresponding quantum criticality in the real system involving dissipations. Our work not only extends the understanding of the light-atom interacting system, but also provides the guidelines and benchmark for the future experiments.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
    de Parny, L. de Forges
    Hebert, F.
    Rousseau, V. G.
    Batrouni, G. G.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05)
  • [42] Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice
    Hu, Ying
    Liang, Zhaoxin
    Hu, Bambi
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [43] Spin effects and quantum corrections to the conductivity of two-dimensional systems
    Germanenko, A. V.
    LOW TEMPERATURE PHYSICS, 2009, 35 (01) : 24 - 31
  • [44] Optical excitations in compressible and incompressible two-dimensional electron liquids
    Grass, Tobias
    Cotlet, Ovidiu
    Imamoglu, Atac
    Hafezi, Mohammad
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [45] Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System
    Abdel-Rady, A. S.
    Hassan, Samia S. A.
    Osman, Abdel-Nasser A.
    Salah, Ahmed
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3655 - 3666
  • [46] Quantum Monte Carlo Simulations of the Kosterlitz-Thouless Transition for Two-Dimensional Disordered Bose-Hubbard Model
    Kuroyanagi, H.
    Tsukamoto, M.
    Tsubota, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 162 (5-6) : 609 - 616
  • [47] Optical excitations and thermoelectric properties of two-dimensional holey graphene
    Singh, Deobrat
    Shukla, Vivekanand
    Ahuja, Rajeev
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [48] Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet
    Dzade, Nelson Y.
    Obodo, Kingsley O.
    Adjokatse, Sampson K.
    Ashu, Akosa C.
    Amankwah, Emmanuel
    Atiso, Clement D.
    Bello, Abdulhakeem A.
    Igumbor, Emmanuel
    Nzabarinda, Stany B.
    Obodo, Joshua T.
    Ogbuu, Anthony O.
    Femi, Olu Emmanuel
    Udeigwe, Josephine O.
    Waghmare, Umesh V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (37)
  • [49] Effect of Berry phase on nonlinear response of two-dimensional fermions
    Raichev, O. E.
    Zudov, M. A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [50] Phase coherence and spectral functions in the two-dimensional excitonic systems
    Apinyan, V.
    Kopec, T. K.
    PHYSICA B-CONDENSED MATTER, 2015, 473 : 75 - 92