Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction

被引:117
|
作者
Xiong, Liwei [1 ]
Qiu, Yunfan [1 ]
Peng, Xiang [1 ,2 ,3 ]
Liu, Zhitian [1 ]
Chu, Paul K. [2 ,3 ]
机构
[1] Wuhan Inst Technol, Hubei Engn Technol Res Ctr Optoelect & New Energy, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic structure; Hydrogen evolution reaction; Catalytic mechanism; Water splitting; Modulation strategy; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; HIGHLY EFFICIENT; ACTIVE-SITES; ULTRATHIN NANOSHEETS; LATTICE DISTORTION; IRON PHOSPHIDE; WATER; OXYGEN; MOS2; VACANCIES;
D O I
10.1016/j.nanoen.2022.107882
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen evolution reaction (HER) in water splitting is vital to the production of high-purity hydrogen from sustainable energy sources in order to combat climate change and environmental crises resulting from com-bustion of conventional fossil fuels. However, HER suffers from sluggish electrochemical reactions as well as expensive precious metal-based catalysts. Inexpensive transition metals and their compounds are desirable substitutes for precious-metal-based compounds for HER. Several strategies have been proposed to modulate the electronic configuration to improve the catalytic properties because the electronic structure contributes signif-icantly to the electrocatalytic activity. Herein, we describe the effects and mechanism of the electronic structure on the electrocatalytic activity and discuss viable strategies to modulate the electronic configuration of elec-trocatalysts by means of doping, vacancies, heterostructures, strain, and phase engineering. In addition, the advantages and disadvantages of each strategy as well as challenges and prospective of transition metal-based HER catalysts are discussed.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Strain engineering of electrocatalysts for hydrogen evolution reaction
    Mao, Xinyuan
    Qin, Zhuhui
    Ge, Shundong
    Rong, Chao
    Zhang, Bowei
    Xuan, Fuzhen
    MATERIALS HORIZONS, 2023, 10 (02) : 340 - 360
  • [42] Recent advances in transition metal phosphide-based heterostructure electrocatalysts for the oxygen evolution reaction
    Wu, Wangzhi
    Luo, Shuiping
    Huang, Yujin
    He, Huibing
    Shen, Pei Kang
    Zhu, Jinliang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (04) : 1064 - 1083
  • [43] Exfoliated Transition Metal Dichalcogenide-Based Electrocatalysts for Oxygen Evolution Reaction
    Minadakis, Michail P.
    Tagmatarchis, Nikos
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (10)
  • [44] Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy
    Wang, Jing
    Liao, Ting
    Wei, Zhongzhe
    Sun, Junting
    Guo, Junjie
    Sun, Ziqi
    SMALL METHODS, 2021, 5 (04):
  • [45] Polyaniline-based electrocatalysts for electrochemical hydrogen evolution reaction
    Ramohlola, Kabelo E.
    Modibane, Kwena D.
    Ndipingwi, Miranda M.
    Iwuoha, Emmanuel I.
    EUROPEAN POLYMER JOURNAL, 2024, 213
  • [46] Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction
    Miao, Mao
    Pan, Jing
    He, Ting
    Yan, Ya
    Xia, Bao Yu
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (46) : 10947 - +
  • [47] Transition metal-based chalcogenides as electrocatalysts for overall water splitting in hydrogen energy production
    Shahzad, Umer
    Saeed, Mohsin
    Marwani, Hadi M.
    Al-Humaidi, Jehan Y.
    Rehman, Shujah ur
    Althomali, Raed H.
    Rahman, Mohammed M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 65 : 215 - 224
  • [48] Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review
    Theerthagiri, Jayaraman
    Lee, Seung Jun
    Murthy, Arun Prasad
    Madhavan, Jagannathan
    Choi, Myong Yong
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2020, 24 (01)
  • [49] Nanocrystalline transition metal tetraborides as efficient electrocatalysts for hydrogen evolution reaction at the large current density
    Wang, Hao
    Yang, Xiaowei
    Bao, Lihong
    Zong, Yuyang
    Gao, Yuxin
    Miao, Qi
    Zhang, Min
    Ma, Ruguang
    Zhao, Jijun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 967 - 975
  • [50] A review of transition metal-based bifunctional oxygen electrocatalysts
    Ibrahim, Kassa B.
    Tsai, Meng-Che
    Chala, Soressa A.
    Berihun, Mulatu K.
    Kahsay, Amaha W.
    Berhe, Taame A.
    Su, Wei-Nien
    Hwang, Bing-Joe
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2019, 66 (08) : 829 - 865