Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth

被引:8
作者
Aydin, Ismail [1 ]
Unal, Cihan [2 ]
机构
[1] Sinop Univ, Dept Math, TR-57000 Sinop, Turkey
[2] Assessment Select & Placement Ctr, TR-06800 Ankara, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 04期
关键词
quasilinear elliptic equation; weighted stochastic field exponent Sobolev spaces; pseudo-monotone operator; compact embedding theorem; VARIABLE EXPONENT;
D O I
10.15672/hujms.561682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider weighted stochastic field exponent function spaces L-v(p(.,.))(D x Omega) and W-v(k,p(.,.))( (D x Omega). Also, we study some basic properties and embeddings of these spaces. Finally, we present an application for defined spaces to the stochastic partial differential equations with stochastic field growth.
引用
收藏
页码:1383 / 1396
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 2006, International Mathematical Forum
[2]   Lebesgue spaces with variable exponent on a probability space [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) :207-216
[3]   PSEUDO-MONOTONE OPERATORS AND NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS ON UNBOUNDED DOMAINS [J].
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (07) :2659-2661
[4]  
Cartan H., 1971, DIFFERENTIAL CALCULU
[5]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[6]   Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients [J].
Fan, XL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :464-477
[7]   The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Koskenoja, Mika ;
Varonen, Susanna .
POTENTIAL ANALYSIS, 2006, 25 (03) :205-222
[8]   Overview of differential equations with non-standard growth [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Le, Ut V. ;
Nuortio, Matti .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4551-4574
[9]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[10]  
Lahmi B, 2018, MATH REP, V20, P81