SOME REMARKS ON THE RIEMANN ZETA FUNCTION AND PRIME FACTORS OF NUMERATORS OF BERNOULLI NUMBERS

被引:1
作者
Luca, Florian [1 ]
Pizarro-Madariaga, Amalia [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Univ Valparaiso, Dept Matemat, Valparaiso, Chile
关键词
Riemann zeta function; nonholonomicity; primes; Bernoulli numbers;
D O I
10.1017/S0004972710030054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the sequence {log zeta(n)}(n >= 2) is not holonomic, that is, does not satisfy a finite recurrence relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli numbers.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 5 条
[1]  
Ball K, 2001, INVENT MATH, V146, P193, DOI 10.1007/s002220100168
[2]   Non-holonomicity of sequences defined via elementary functions [J].
Bell, Jason P. ;
Gerhold, Stefan ;
Klazar, Martin ;
Luca, Florian .
ANNALS OF COMBINATORICS, 2008, 12 (01) :1-16
[3]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[4]  
Halberstam H., 1974, Lond. Math. Soc. Monographs
[5]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269