A PRIORI ESTIMATES AND REDUCTION PRINCIPLES FOR QUASILINEAR ELLIPTIC PROBLEMS AND APPLICATIONS

被引:0
作者
D'Ambrosio, Lorenzo [1 ]
Mitidieri, Enzo [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词
INEQUALITY; NONEXISTENCE; EQUATIONS; OPERATORS; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variants of Kato's inequality are proved for general quasilinear elliptic operators L. As an outcome we show that, dealing with Liouville theorems for coercive equations of the type Lu = f (x, u, del(L)u) on Omega subset of R-N, where f is such that f(x, t, xi) t >= 0, the assumption that the possible solutions are nonnegative involves no loss of generality. Related consequences such as comparison principles and a priori bounds on solutions are also presented. An underlying structure throughout this work is the framework of Carnot groups.
引用
收藏
页码:935 / 1000
页数:66
相关论文
共 44 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]   Kato's inequality and Kato's inequality up to the boundary [J].
Ancona, Alano .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) :939-944
[3]  
[Anonymous], 2011, FUNDAMENTAL PRINCIPL
[4]  
[Anonymous], 1982, Mathematical Notes, DOI DOI 10.1515/9780691222455
[5]  
[Anonymous], 2001, T MAT I STEKLOVA
[6]   NONEXISTENCE RESULTS FOR SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
BENGURIA, RD ;
LORCA, S ;
YARUR, CS .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) :615-634
[7]  
Béthuel F, 2008, CONTEMP MATH, V473, P55
[8]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[9]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[10]  
Brenier Y, 2003, LECT NOTES MATH, V1813, P91