Isovector fields and similarity solutions of Einstein vacuum equations for rotating fields

被引:30
作者
Attallah, S. K. [1 ]
El-Sabbagh, M. F. [2 ]
Ali, A. T. [1 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
[2] Menia Univ, Fac Sci, Dept Math, Al Minya, Egypt
关键词
Isovector fields; Symmetry groups; Einstein vacuum equations;
D O I
10.1016/j.cnsns.2006.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The isovector fields (infinitesimal generators of Lie groups) of Einstein vacuum equations for stationary axially symmetric rotating fields, in conventional form, that is a coupled system of nonlinear partial differential equations (PDEs) of second order are derived using the geometric prolongation technique. Some symmetry transformations and similarity (exact) solutions of Einstein vacuum equations are obtained. (C) 2006 Elsevier B. V. All rights reserved.
引用
收藏
页码:1153 / 1161
页数:9
相关论文
共 15 条
[1]   On certain classes of exact solutions of Einstein equations for rotating fields in conventional and nonconventional form [J].
Bhutani, OP ;
Singh, K ;
Kalra, DK .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (07) :769-786
[2]  
Bluman G. W., 1989, Symmetries and Differential Equations
[3]  
CARTAN E, 1945, SYSTEMS DIFFERENTIEL
[4]  
Edelen D. G. B., 1985, APPL EXTERIOR CALCUL
[5]  
El-Sabbagh MF, 2005, INT J NONLINEAR SCI, V6, P151
[6]   GEOMETRIC APPROACH TO INVARIANCE GROUPS AND SOLUTION OF PARTIAL DIFFERENTIAL SYSTEMS [J].
HARRISON, BK ;
ESTABROOK, FB .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (04) :653-+
[7]  
Ibragimov NH, 1984, Transformation groups applied to mathematical physics, V3, DOI DOI 10.1007/978-94-009-5243-0
[8]  
Islam J N, 1985, Rotating fields in general relativity
[9]  
Olver P.J., 1993, APPL LIE GROUPS DIFF, V107
[10]  
Ovsiannikov L. V. E., 1982, Group analysis of differential equations