Interval state observer design for fractional systems

被引:0
作者
Hamdi, S. E. [1 ]
Amairi, M. [1 ]
Aoun, M. [1 ]
Abdelkrim, M. N. [1 ]
机构
[1] Univ Gabes, Natl Engn Sch Gabes ENIG, Res Unit Modeling Anal & Control Syst MACS 06 UR, Gabes 6029, Tunisia
来源
2013 10TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD) | 2013年
关键词
fractional system; interval analysis; initial value problem; observer; bounded error; INITIAL-VALUE PROBLEMS; DIFFERENTIAL-EQUATIONS; VALIDATED SOLUTIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a design method for interval state observer for fractional systems in a bounded-error context. A causal observer based on prediction-correction approach is proposed. The prediction part consists on a validated solving of an Initial Value Problem (IVP) for a Fractional Differential Equation (FDE) and the correction part uses set inversion algorithm. A numerical example is presented to show the effectiveness of the proposed design method.
引用
收藏
页数:6
相关论文
共 19 条
[1]   A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation [J].
Amairi, M. ;
Aoun, M. ;
Najar, S. ;
Abdelkrim, M. N. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) :2162-2168
[2]  
Amairi M., 2010, INT REV MODELLING SI, V3, P265
[3]  
Amairi M., 2011, SYSTEME ORDRE NONENT
[4]  
[Anonymous], 2005, THESIS U BORDEAUX
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   Numerical simulations of fractional systems: An overview of existing methods and improvements [J].
Aoun, M ;
Malti, R ;
Levron, F ;
Oustaloup, A .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :117-131
[7]   Solution of fractional differential equations by using differential transform method [J].
Arikoglu, Aytac ;
Ozkol, Ibrahim .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1473-1481
[8]   Series solutions of non-linear Riccati differential equations with fractional order [J].
Cang, Jie ;
Tan, Yue ;
Xu, Hang ;
Liao, Shi-Jun .
CHAOS SOLITONS & FRACTALS, 2009, 40 (01) :1-9
[9]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[10]   Solving a system of nonlinear fractional differential equations using Adomian decomposition [J].
Jafari, Hossein ;
Daftardar-Gejji, Varsha .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :644-651