A test function method for evolution equations with fractional powers of the Laplace operator

被引:18
作者
D'Abbicco, M. [1 ]
Fujiwara, K. [2 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
[2] Tohoku Univ, Math Inst, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan
关键词
Nonlinear evolution equations; Critical exponent; Global-in-time solutions; Fractional Laplacian; Test function method; SEMILINEAR WAVE-EQUATION; BLOW-UP; L-P; CRITICAL EXPONENT; GLOBAL-SOLUTIONS; LIFE-SPAN; NONEXISTENCE; EXISTENCE; GRUSHIN;
D O I
10.1016/j.na.2020.112114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a test function method to obtain nonexistence of global-in-time solutions for higher order evolution equations with fractional derivatives and a power nonlinearity, under a sign condition on the initial data. In order to deal with fractional powers of the Laplace operator, we introduce a suitable test function and a suitable class of weak solutions. The optimality of the nonexistence result provided is guaranteed by both scaling arguments and counterexamples. In particular, our manuscript provides the counterpart of nonexistence for several recent results of global-in-time existence of small data solutions to the following problem: { u(tt) + (-Delta)(theta) u(t) + (-Delta)(sigma) u = f(u, u(t)), t > 0, x is an element of R-n, u(0, x) = u(0)(x), u(t)(0, x) = u(1)(x), with f = vertical bar u vertical bar(p) or f = vertical bar u(t)vertical bar(p), where theta >= 0 and sigma > 0 are fractional powers. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 54 条
[1]  
Carbotti A., 2019, DEGRUYTER STUDIES MA, V74
[2]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[3]   A pointwise estimate for fractionary derivatives with applications to partial differential equations [J].
Córdoba, A ;
Córdoba, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15316-15317
[4]   A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :1-40
[5]   A classification of structural dissipations for evolution operators [J].
D'Abbicco, M. ;
Ebert, M. R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2558-2582
[6]   Diffusion phenomena for the wave equation with structural damping in the Lp - Lq framework [J].
D'Abbicco, M. ;
Ebert, M. R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2307-2336
[7]   An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :16-34
[8]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[9]  
D'Abbicco M, 2013, ADV NONLINEAR STUD, V13, P867
[10]   Dissipative higher order hyperbolic equations [J].
D'Abbicco, Marcello ;
Jannelli, Enrico .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (11) :1682-1706