Uncertainty principles for hypercomplex signals in the linear canonical transform domains

被引:58
作者
Yang, Yan [1 ]
Kou, Kit Ian [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Dept Math, Taipa, Peoples R China
关键词
Linear canonical transform; Uncertainty principle; Hypercomplex signals; Gaussian signals; FRACTIONAL FOURIER; REAL SIGNALS; PHASE-SPACE;
D O I
10.1016/j.sigpro.2013.08.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on the product of the effective widths of complex paravector- (multivector-)valued signals in the time and frequency domains. It is seen that this lower bound can be achieved by a Gaussian signal. An example is given to verify the result. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 61 条
[1]  
[Anonymous], 2000, FRACTIONAL FOURIER T
[2]  
[Anonymous], 1979, INTEGRAL TRANSFORMS
[3]   NONORTHOGONAL DOMAINS IN PHASE-SPACE OF QUANTUM OPTICS AND THEIR RELATION TO FRACTIONAL FOURIER-TRANSFORMS [J].
AYTUR, O ;
OZAKTAS, HM .
OPTICS COMMUNICATIONS, 1995, 120 (3-4) :166-170
[4]   An uncertainty principle for quaternion Fourier transform [J].
Bahri, Mawardi ;
Hitzer, Eckhard S. M. ;
Hayashi, Akihisa ;
Ashino, Ryuichi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) :2398-2410
[5]   Clifford algebra Cl3,0-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets [J].
Bahri, Mawardi ;
Hitzer, Eckhard S. M. .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2007, 5 (06) :997-1019
[6]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[7]  
Bas P, 2003, 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P521
[8]   The theory and use of the quaternion wavelet transform [J].
Bayro-Corrochano, E .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (01) :19-35
[9]   Quaternion fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations [J].
Bayro-Corrochano, Eduardo ;
Trujillo, Noel ;
Naranjo, Michel .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) :179-190
[10]  
Bialynicki-Birula I, 2007, AIP CONF PROC, V889, P52