Nonparametric estimation and bootstrap confidence intervals for the optimal maintenance time of a repairable system

被引:7
作者
Gilardoni, Gustavo L. [1 ]
de Oliveira, Maristela D. [2 ]
Colosimo, Enrico A. [3 ]
机构
[1] Univ Brasilia, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Bahia, BR-41170290 Salvador, BA, Brazil
[3] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
关键词
Bounded intensity models; Constrained maximum likelihood estimation; Greatest convex minorant; Minimal repair; Poisson process; Power law process; INTENSITY FUNCTION; RELIABILITY; INFERENCE;
D O I
10.1016/j.csda.2013.02.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Consider a repairable system operating under a maintenance strategy that calls for complete preventive repair actions at pre-scheduled times and minimal repair actions whenever a failure occurs. Under minimal repair, the failures are assumed to follow a nonhomogeneous Poisson process with an increasing intensity function. This paper departs from the usual power-law-process parametric approach by using the constrained nonparametric maximum likelihood estimate of the intensity function to estimate the optimum preventive maintenance policy. Several strategies to bootstrap the failure times and construct confidence intervals for the optimal maintenance periodicity are presented and discussed. The methodology is applied to a real data set concerning the failure histories of a set of power transformers. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 28 条
[1]   NONPARAMETRIC INFERENCE FOR A FAMILY OF COUNTING PROCESSES [J].
AALEN, O .
ANNALS OF STATISTICS, 1978, 6 (04) :701-726
[2]  
Aalen OO, 2008, STAT BIOL HEALTH, P1
[3]  
[Anonymous], 1967, Mathematical Statistics: A Decision Theoretic Approach
[4]   OPTIMUM PREVENTIVE MAINTENANCE POLICIES [J].
BARLOW, R ;
HUNTER, L .
OPERATIONS RESEARCH, 1960, 8 (01) :90-100
[5]  
Barlow R.E., 1972, Statistical inference under order restrictions
[6]   SOME NONPARAMETRIC TECHNIQUES FOR ESTIMATING THE INTENSITY FUNCTION OF A CANCER RELATED NONSTATIONARY POISSON-PROCESS [J].
BARTOSZYNSKI, R ;
BROWN, BW ;
MCBRIDE, CM ;
THOMPSON, JR .
ANNALS OF STATISTICS, 1981, 9 (05) :1050-1060
[7]   ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS OF POISSON TYPE [J].
BOSWELL, MT .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1564-&
[8]   Kernel estimation of rate function for recurrent event data [J].
Chiang, CT ;
Wang, MC ;
Huang, CY .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (01) :77-91
[9]   Optimal Maintenance Time for Repairable Systems Under Two Types of Failures [J].
Colosimo, Enrico A. ;
Gilardoni, Gustavo L. ;
Santos, Wagner B. ;
Motta, Sergio B. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (07) :1289-1298
[10]   Bootstrap confidence regions for the intensity of a Poisson point process [J].
Cowling, A ;
Hall, P ;
Phillips, MJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1516-1524