A SHARP LOWER BOUND FOR A RESONANCE-COUNTING FUNCTION IN EVEN DIMENSIONS

被引:0
作者
Christiansen, T. J. [1 ]
机构
[1] Univ Missouri, Dept Math, 202 Math Sci Bldg, Columbia, MO 65211 USA
关键词
scattering theory; resonance; obstacle; metric; SCATTERING POLES; POLYNOMIAL BOUNDS; CONVEX OBSTACLES; WAVE-EQUATION; NUMBER; LAPLACIAN; RESOLVENT; EXTERIOR; OPERATOR; TRACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves sharp lower bounds on a resonance-counting function for obstacle scattering in even-dimensional Euclidean space without a need for trapping assumptions. Similar lower bounds are proved for some other compactly supported perturbations of -Delta on R-d, for example, for the Laplacian for certain metric perturbations on Rd. The proof uses a Poisson formula for resonances, complementary to one proved by Zworski in even dimensions.
引用
收藏
页码:579 / 604
页数:26
相关论文
共 44 条
[1]  
[Anonymous], MATH THEORY SC UNPUB
[2]   THE POISSON RELATION FOR THE WAVE-EQUATION IN AN UNBOUNDED SPACE - APPLICATION TO DIFFUSION-THEORY [J].
BARDOS, C ;
GUILLOT, JC ;
RALSTON, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (08) :905-958
[3]   PURELY IMAGINARY SCATTERING FREQUENCIES FOR EXTERIOR DOMAINS [J].
BEALE, JT .
DUKE MATHEMATICAL JOURNAL, 1974, 41 (03) :607-637
[4]   Resonances for Manifolds Hyperbolic Near Infinity: Optimal Lower Bounds on Order of Growth [J].
Borthwick, D. ;
Christiansen, T. J. ;
Hislop, P. D. ;
Perry, P. A. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (19) :4431-4470
[5]   Lower bounds for shape resonances widths of long range Schrodinger operators [J].
Burq, N .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (04) :677-735
[6]   Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II [J].
Cardoso, F ;
Vodev, G .
ANNALES HENRI POINCARE, 2002, 3 (04) :673-691
[7]  
Christiansen TJ, 2016, T AM MATH SOC, V368, P1361
[8]  
CHRISTIANSEN T. J., AM J MATH IN PRESS
[9]   SPECTRAL DUALITY FOR PLANAR BILLIARDS [J].
ECKMANN, JP ;
PILLET, CA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :283-313
[10]  
Gokhberg I. Ts., 1969, Introduction to the Theory of Linear Nonselfadjoint Operators