Auslander-Reiten (d+2)-angles in subcategories and a (d+2)-angulated generalisation of a theorem by Bruning

被引:17
作者
Fedele, Francesca [1 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
d-abelian category; d-representation finite algebra; Extension closed subcategories; Higher dimensional; Auslander-Reiten theory; CATEGORY;
D O I
10.1016/j.jpaa.2018.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Phi be a finite dimensional algebra over an algebraically closed field k and assume gldim Phi <= d, for some fixed positive integer d. For d = 1, Bruning proved that there is a bijection between the wide subcategories of the abelian category mod Phi and those of the triangulated category D-b (mod Phi). Moreover, for a suitable triangulated category M, Jorgensen gave a description of Auslander-Reiten triangles in the extension closed subcategories of M. In this paper, we generalise these results for d-abelian and (d + 2)-angulated categories, where kernels and cokernels are replaced by complexes of d + 1 objects and triangles are replaced by complexes of d + 2 objects. The categories are obtained as follows: if F subset of mod Phi is a d-cluster tilting subcategory, consider (F) over bar := add{Sigma(id) F vertical bar i is an element of Z} subset of D-b(mod Phi). Then.F is d-abelian and plays the role of a higher mod Phi having for higher derived category the (d + 2)-angulated category (F) over bar. Crown Copyright (C) 2018 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3554 / 3580
页数:27
相关论文
共 17 条
[1]  
Anderson F. W., 1992, Rings and Categories of Modules, volume 13 of Graduate Texts in Mathematics, V2nd ed
[2]  
Assem I., 2010, LONDON MATH SOC STUD, V65
[3]  
Brüning K, 2007, HOMOL HOMOTOPY APPL, V9, P165
[4]   n-angulated categories [J].
Geiss, Christof ;
Keller, Bernhard ;
Oppermann, Steffen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 :101-120
[5]   ON THE DERIVED CATEGORY OF A FINITE-DIMENSIONAL ALGEBRA [J].
HAPPEL, D .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (03) :339-389
[6]  
Herschend M., 2017, ARXIV170502246MATHRT
[7]   Mutation in triangulated categories and rigid Cohen-Macaulay modules [J].
Iyama, Osamu ;
Yoshino, Yuji .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :117-168
[8]   Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories [J].
Iyama, Osamu .
ADVANCES IN MATHEMATICS, 2007, 210 (01) :22-50
[9]   Cluster tilting for higher Auslander algebras [J].
Iyama, Osamu .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :1-61
[10]   n-Abelian and n-exact categories [J].
Jasso, Gustavo .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :703-759