Sentence Compression for Aspect-Based Sentiment Analysis

被引:83
|
作者
Che, Wanxiang [1 ]
Zhao, Yanyan [2 ]
Guo, Honglei [3 ]
Su, Zhong [3 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Media Technol & Art, Harbin 150001, Peoples R China
[3] IBM Res China, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-based sentiment analysis; potential semantic features; sentence compression; sentiment analysis;
D O I
10.1109/TASLP.2015.2443982
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sentiment analysis, which addresses the computational treatment of opinion, sentiment, and subjectivity in text, has received considerable attention in recent years. In contrast to the traditional coarse-grained sentiment analysis tasks, such as document-level sentiment classification, we are interested in the fine-grained aspect-based sentiment analysis that aims to identify aspects that users comment on and these aspects' polarities. Aspect- based sentiment analysis relies heavily on syntactic features. However, the reviews that this task focuses on are natural and spontaneous, thus posing a challenge to syntactic parsers. In this paper, we address this problem by proposing a framework of adding a sentiment sentence compression (Sent_Comp) step before performing the aspect-based sentiment analysis. Different from the previous sentence compression model for common news sentences, Sent_Comp seeks to remove the sentiment-unnecessary information for sentiment analysis, thereby compressing a complicated sentiment sentence into one that is shorter and easier to parse. We apply a discriminative conditional random field model, with certain special features, to automatically compress sentiment sentences. Using the Chinese corpora of four product domains, Sent_Comp significantly improves the performance of the aspect-based sentiment analysis. The features proposed for Sent_Comp, especially the potential semantic features, are useful for sentiment sentence compression.
引用
收藏
页码:2111 / 2124
页数:14
相关论文
共 50 条
  • [31] Learning from word semantics to sentence syntax by graph convolutional networks for aspect-based sentiment analysis
    Dai, Anan
    Hu, Xiaohui
    Nie, Jianyun
    Chen, Jinpeng
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 14 (01) : 17 - 26
  • [32] Deep learning for aspect-based sentiment analysis: a review
    Zhu L.
    Xu M.
    Bao Y.
    Xu Y.
    Kong X.
    PeerJ Computer Science, 2022, 8
  • [33] Sentence constituent-aware attention mechanism for end-to-end aspect-based sentiment analysis
    Ting Lu
    Yan Xiang
    Li Zhang
    Jiqun Zhang
    Multimedia Tools and Applications, 2022, 81 : 15333 - 15348
  • [34] Ensemble Deep Learning for Aspect-based Sentiment Analysis
    Mohammadi, Azadeh
    Shaverizade, Anis
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 29 - 38
  • [35] Improving aspect-based sentiment analysis via aligning aspect embedding
    Tan, Xingwei
    Cai, Yi
    Xu, Jingyun
    Leung, Ho-Fung
    Chen, Wenhao
    Li, Qing
    NEUROCOMPUTING, 2020, 383 : 336 - 347
  • [36] Aspect-based sentiment analysis with alternating coattention networks
    Yang, Chao
    Zhang, Hefeng
    Jiang, Bin
    Li, Keqin
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (03) : 463 - 478
  • [37] Learning from word semantics to sentence syntax by graph convolutional networks for aspect-based sentiment analysis
    Anan Dai
    Xiaohui Hu
    Jianyun Nie
    Jinpeng Chen
    International Journal of Data Science and Analytics, 2022, 14 : 17 - 26
  • [38] Aspect-based Sentiment Analysis for Indonesian Restaurant Reviews
    Ekawati, Devina
    Khodra, Masayu Leylia
    2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS, CONCEPTS, THEORY, AND APPLICATIONS (ICAICTA) PROCEEDINGS, 2017,
  • [39] Aspect-Specific Context Modeling for Aspect-Based Sentiment Analysis
    Ma, Fang
    Zhang, Chen
    Zhang, Bo
    Song, Dawei
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 513 - 526
  • [40] Aspect-Based Sentiment Analysis Using Attribute Extraction of Hospital Reviews
    Ankita Bansal
    Niranjan Kumar
    New Generation Computing, 2022, 40 : 941 - 960