Sentence Compression for Aspect-Based Sentiment Analysis

被引:83
|
作者
Che, Wanxiang [1 ]
Zhao, Yanyan [2 ]
Guo, Honglei [3 ]
Su, Zhong [3 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Media Technol & Art, Harbin 150001, Peoples R China
[3] IBM Res China, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-based sentiment analysis; potential semantic features; sentence compression; sentiment analysis;
D O I
10.1109/TASLP.2015.2443982
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sentiment analysis, which addresses the computational treatment of opinion, sentiment, and subjectivity in text, has received considerable attention in recent years. In contrast to the traditional coarse-grained sentiment analysis tasks, such as document-level sentiment classification, we are interested in the fine-grained aspect-based sentiment analysis that aims to identify aspects that users comment on and these aspects' polarities. Aspect- based sentiment analysis relies heavily on syntactic features. However, the reviews that this task focuses on are natural and spontaneous, thus posing a challenge to syntactic parsers. In this paper, we address this problem by proposing a framework of adding a sentiment sentence compression (Sent_Comp) step before performing the aspect-based sentiment analysis. Different from the previous sentence compression model for common news sentences, Sent_Comp seeks to remove the sentiment-unnecessary information for sentiment analysis, thereby compressing a complicated sentiment sentence into one that is shorter and easier to parse. We apply a discriminative conditional random field model, with certain special features, to automatically compress sentiment sentences. Using the Chinese corpora of four product domains, Sent_Comp significantly improves the performance of the aspect-based sentiment analysis. The features proposed for Sent_Comp, especially the potential semantic features, are useful for sentiment sentence compression.
引用
收藏
页码:2111 / 2124
页数:14
相关论文
共 50 条
  • [21] Data augmentation for aspect-based sentiment analysis
    Li, Guangmin
    Wang, Hui
    Ding, Yi
    Zhou, Kangan
    Yan, Xiaowei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) : 125 - 133
  • [22] A comprehensive survey on aspect-based sentiment analysis
    Yadav, Kaustubh
    Kumar, Neeraj
    Maddikunta, Praveen Kumar Reddy
    Gadekallu, Thippa Reddy
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2021, 12 (04) : 279 - 290
  • [23] Aspect-based sentiment analysis with metaphorical information
    Tian H.
    Yu L.
    Tian S.
    Long J.
    Zhou T.
    Wang B.
    Li Y.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04) : 8065 - 8074
  • [24] Aspect-Based Sentiment Analysis for Service Industry
    Maroof, Afsheen
    Wasi, Shaukat
    Jami, Syed Imran
    Siddiqui, Muhammad Shoaib
    IEEE ACCESS, 2024, 12 : 109702 - 109713
  • [25] A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11019 - 11038
  • [26] Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
    Obiedat, Ruba
    Al-Darras, Duha
    Alzaghoul, Esra
    Harfoushi, Osama
    IEEE ACCESS, 2021, 9 (09) : 152628 - 152645
  • [27] Method for Aspect-Based Sentiment Annotation Using Rhetorical Analysis
    Augustyniak, Lukasz
    Rajda, Krzysztof
    Kajdanowicz, Tomasz
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2017, PT I, 2017, 10191 : 772 - 781
  • [28] Aspect-Based Sentiment Quantification
    Matsiiako, Vladyslav
    Frasincar, Flavius
    Boekestijn, David
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 1718 - 1729
  • [29] Store, share and transfer: Learning and updating sentiment knowledge for aspect-based sentiment analysis
    Zheng, Yongqiang
    Li, Xia
    Nie, Jian-Yun
    INFORMATION SCIENCES, 2023, 635 : 151 - 168
  • [30] Sentence constituent-aware attention mechanism for end-to-end aspect-based sentiment analysis
    Lu, Ting
    Xiang, Yan
    Zhang, Li
    Zhang, Jiqun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 15333 - 15348