Multiplicity and Bifurcation of Solutions for a Class of Asymptotically Linear Elliptic Problems on the Unit Ball

被引:0
作者
Xu, Benlong [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2013年
关键词
NONLINEAR EIGENVALUE PROBLEMS; POSITIVE SOLUTIONS; EQUATIONS;
D O I
10.1155/2013/510943
中图分类号
学科分类号
摘要
This paper mainly dealt with the exact number and global bifurcation of positive solutions for a class of semilinear elliptic equations with asymptotically linear function on a unit ball. As byproducts, some existence and multiplicity results are also obtained on a general bounded domain.
引用
收藏
页数:8
相关论文
共 20 条
[1]   NONLINEAR EIGENVALUE PROBLEMS HAVING PRECISELY 2 SOLUTIONS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1976, 150 (01) :27-37
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]   POSITIVE SOLUTIONS OF ASYMPTOTICALLY LINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
AMBROSETTI, A ;
HESS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :411-422
[4]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[5]   SOME CONTINUATION AND VARIATIONAL METHODS FOR POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :207-218
[6]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[7]   Proof of a conjecture for the perturbed Gelfand equation from combustion theory [J].
Du, YH ;
Lou, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :213-230
[8]   Structure of the solution set for a class of semilinear elliptic equations with asymptotic linear nonlinearity [J].
Duo, Ha ;
Shi, Junping ;
Wang, Yuwen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2369-2378
[9]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL, V19
[10]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243