Experimental investigation on the fatigue behavior of laser powder bed fused 316L stainless steel

被引:18
|
作者
Ponticelli, Gennaro Salvatore [1 ]
Panciroli, Riccardo [1 ]
Venettacci, Simone [1 ]
Tagliaferri, Flaviana [1 ]
Guarino, Stefano [1 ]
机构
[1] Univ Rome Niccolo Cusano, Via don Carlo Gnocchi 3, I-00166 Rome, Italy
关键词
Available online xxxx; Additive manufacturing; laser powder bed; fusion; Stainless steel 316L; Fatigue strength; Fatigue life; Reverse bending; SLM PROCESS PARAMETERS; MECHANICAL-PROPERTIES; ENERGY DENSITY; MICROSTRUCTURE; POROSITY; OPTIMIZATION; STRENGTH; ALUMINUM;
D O I
10.1016/j.cirpj.2022.07.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing of metal powder materials through Laser Powder Bed Fusion (LPBF) allows for a single-step fabrication process of complex geometries. However, the introduction of such an innovative technology opens new questions about the fatigue life of functional components especially intended for applications where the products are subjected to severe time-varying loading conditions. In this context, the present work aims at evaluating the fatigue strength of 316L stainless steel samples fabricated through laser powder bed fusion by controlling the building orientation and the volumetric energy density. The work at first presents the response of the LPBF fabricated samples to a monotonic tensile load for varying building orientations. It follows the presentation of their fatigue response to a reverse bending loading condition. Quasi-static tensile tests show that LPBF specimens have lower elastic modulus but higher ultimate and yield strength than the original bulk material, whereby the results evidence a strong anisotropy related to the building orientation. Porosity and building orientation are found to strongly affect the fatigue behavior, with the fatigue limit which lowers from 50% of the ultimate strength of the bulk material down to 20% for the LPBF-ed specimens. Finally, the observation of the failure surfaces suggests that the early fracture of the samples is due to the concomitant initiations of cracks at different sites that eventually coalesce and promote the failure.
引用
收藏
页码:787 / 800
页数:14
相关论文
共 50 条
  • [21] Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion
    Calderon, L. A. Avila
    Rehmer, B.
    Schriever, S.
    Ulbricht, A.
    Jacome, L. Agudo
    Sommer, K.
    Mohr, G.
    Skrotzki, B.
    Evans, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
  • [22] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue, P. J.
    Beste, L. H.
    Richter, B.
    Agrawal, A.
    Klingbeil, K.
    Thoma, D.
    Radel, T.
    Pfefferkorn, F. E.
    MANUFACTURING LETTERS, 2022, 33 : 670 - 677
  • [23] Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Li, Hua
    Hardacre, David
    JOM, 2018, 70 (03) : 390 - 395
  • [24] Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L
    Meng Zhang
    Chen-Nan Sun
    Xiang Zhang
    Phoi Chin Goh
    Jun Wei
    Hua Li
    David Hardacre
    JOM, 2018, 70 : 390 - 395
  • [25] Effect of Heat Treatment on Fatigue Performance of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Li, Zhehan
    Xie, Deqiao
    Zhou, Kai
    Naqvi, Syed Mesum Raza
    Wang, Dongsheng
    Zhao, Jianfeng
    Shen, Lida
    Tian, Zongjun
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [26] Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 : 251 - 261
  • [27] Effect of heat treatment on fatigue crack initiation of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Hardacre, David
    Li, Hua
    12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), 2018, 165
  • [28] Rotating Bending Fatigue of Laser Powder Bed Fused 316L Stainless Steel at Various Stress Levels: Microstructural Evaluation and Predictive Modeling
    Aghayar, Yahya
    Behvar, Alireza
    Haghshenas, Meysam
    Mohammadi, Mohsen
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2025, 48 (02) : 783 - 796
  • [29] Spall damage mechanisms in laser powder bed fabricated stainless steel 316L
    Koube, K. D.
    Kennedy, G.
    Bertsch, K.
    Kacher, J.
    Thoma, D. J.
    Thadhani, N. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 851
  • [30] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)