Neuromorphic silicon neuron circuits

被引:946
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 澳大利亚研究理事会; 瑞士国家科学基金会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Energy-Efficient Neuron, Synapse and STDP Integrated Circuits
    Cruz-Albrecht, Jose M.
    Yung, Michael W.
    Srinivasa, Narayan
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (03) : 246 - 256
  • [42] Silicon Modeling of the Mihalas-Niebur Neuron
    Folowosele, Fopefolu
    Hamilton, Tara Julia
    Etienne-Cummings, Ralph
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 1915 - 1927
  • [43] A Compact Gated-Synapse Model for Neuromorphic Circuits
    Jones, Alexander
    Jha, Rashmi
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (09) : 1887 - 1895
  • [44] Spike-based local synaptic plasticity: a survey of computational models and neuromorphic circuits
    Khacef, Lyes
    Klein, Philipp
    Cartiglia, Matteo
    Rubino, Arianna
    Indiveri, Giacomo
    Chicca, Elisabetta
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (04):
  • [45] Design of optoelectronic computing circuits with VCSEL-SA based neuromorphic photonic spiking
    Gupta, Sujal
    Gahlot, Surbhi
    Roy, Sukhdev
    OPTIK, 2021, 243
  • [46] Digital LIF Neuron for CTT-Based Neuromorphic Systems
    Gumus, Okyanus T.
    Karimi, Mousa
    Vaisband, Boris
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 267 - 272
  • [47] Towards Efficient Neuromorphic Hardware: Unsupervised Adaptive Neuron Pruning
    Guo, Wenzhe
    Yantir, Hasan Erdem
    Fouda, Mohammed E.
    Eltawil, Ahmed M.
    Salama, Khaled Nabil
    ELECTRONICS, 2020, 9 (07) : 1 - 15
  • [48] Integrated neuron circuit for implementing neuromorphic system with synaptic device
    Lee, Jeong-Jun
    Park, Jungjin
    Kwon, Min-Woo
    Hwang, Sungmin
    Kim, Hyungjin
    Park, Byung-Gook
    SOLID-STATE ELECTRONICS, 2018, 140 : 34 - 40
  • [49] Artificial Neuron with Somatic and Axonal Computation Units: Mathematical and Neuromorphic Models of Persistent Firing Neurons
    Ning Ning
    Huang Kejie
    Shi Luping
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [50] Programmable Spike-Timing-Dependent Plasticity Learning Circuits in Neuromorphic VLSI Architectures
    Azghadi, Mostafa Rahimi
    Moradi, Saber
    Fasnacht, Daniel B.
    Ozdas, Mehmet Sirin
    Indiveri, Giacomo
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2015, 12 (02)