Neuromorphic silicon neuron circuits

被引:946
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
澳大利亚研究理事会; 瑞士国家科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
    Dey, Srijanie
    Dimitrov, Alexander
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [32] A neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyte
    Karimi, Gholamreza
    Ranjbar, Mahnaz
    Amirian, Mohsen
    Shahim-aeen, Afsaneh
    NEUROCOMPUTING, 2018, 272 : 197 - 203
  • [33] Synchronization behavior of coupled neuron circuits composed of memristors
    Ren, Guodong
    Xu, Ying
    Wang, Chunni
    NONLINEAR DYNAMICS, 2017, 88 (02) : 893 - 901
  • [34] Neuromorphic Implementation of Adaptive Exponential Integrate and Fire Neuron
    Abbas, S. Syed Ameer
    Muthulakshmi, C.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATION AND NETWORK TECHNOLOGIES (ICCNT), 2014, : 233 - 237
  • [35] Ultrafast neuromorphic photonic image processing with a VCSEL neuron
    Robertson, Joshua
    Kirkland, Paul
    Alanis, Juan Arturo
    Hejda, Matej
    Bueno, Julian
    Di Caterina, Gaetano
    Hurtado, Antonio
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [36] Artificial Olfactory Neuron for an In-Sensor Neuromorphic Nose
    Han, Joon-Kyu
    Kang, Mingu
    Jeong, Jaeseok
    Cho, Incheol
    Yu, Ji-Man
    Yoon, Kuk-Jin
    Park, Inkyu
    Choi, Yang-Kyu
    ADVANCED SCIENCE, 2022, 9 (18)
  • [37] A versatile neuromorphic system based on simple neuron model
    Zhang, C. M.
    Qiao, G. C.
    Hu, S. G.
    Wang, J. J.
    Liu, Z. W.
    Liu, Y. A.
    Yu, Q.
    Liu, Y.
    AIP ADVANCES, 2019, 9 (01)
  • [38] Realizing Behavior Level Associative Memory Learning Through Three-Dimensional Memristor-Based Neuromorphic Circuits
    An, Hongyu
    An, Qiyuan
    Yi, Yang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04): : 668 - 678
  • [39] Dynamic resistive switching devices for neuromorphic computing
    Wu, Yuting
    Wang, Xinxin
    Lu, Wei D.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (02)
  • [40] Neuromorphic Silicon Photonics for Artificial Intelligence
    Marquez, Bicky A.
    Huang, Chaoran
    Prucnal, Paul R.
    Shastri, Bhavin J.
    SILICON PHOTONICS IV: INNOVATIVE FRONTIERS, 2021, 139 : 417 - 447