Neuromorphic silicon neuron circuits

被引:946
|
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
澳大利亚研究理事会; 瑞士国家科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Memristors for Digital, Memory and Neuromorphic Circuits
    Homouz, Dirar
    Abid, Z.
    Mohammad, Baker
    Halawani, Yasmin
    Acobson, Michael J.
    2013 25TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2013,
  • [22] Building Neuromorphic Circuits with Memristive Devices
    Chang, Ting
    Yang, Yuchao
    Lu, Wei
    IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2013, 13 (02) : 56 - 73
  • [23] NbOx based oscillation neuron for neuromorphic computing
    Gao, Ligang
    Chen, Pai-Yu
    Yu, Shimeng
    APPLIED PHYSICS LETTERS, 2017, 111 (10)
  • [24] Bifurcation analysis in a silicon neuron
    Grassia, F.
    Levi, T.
    Saighi, S.
    Kohno, T.
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 17TH '12), 2012, : 735 - 738
  • [25] Actuating mechanical arms coupled to an array of FitzHugh-Nagumo neuron circuits
    Ngongiah, Isidore Komofor
    Ramakrishnan, Balamurali
    Kuiate, Gaetan Fautso
    Tagne, Raphael
    Kingni, Sifeu Takougang
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (02) : 285 - 299
  • [26] Optoelectronic neuromorphic devices and their applications
    Shen Liu-Feng
    Hu Ling-Xiang
    Kang Feng-Wen
    Ye Yu-Min
    Zhuge Fei
    ACTA PHYSICA SINICA, 2022, 71 (14)
  • [27] Constraints on the design of neuromorphic circuits set by the properties of neural population codes
    Panzeri, Stefano
    Janotte, Ella
    Pequeno-Zurro, Alejandro
    Bonato, Jacopo
    Bartolozzi, Chiara
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (01):
  • [28] Memory and forgetting processes with the firing neuron model
    Swietlik, D.
    Bialowas, J.
    Kusiak, A.
    Cichonska, D.
    FOLIA MORPHOLOGICA, 2018, 77 (02) : 221 - 233
  • [29] Fan-out and fan-in properties of superconducting neuromorphic circuits
    Schneider, M. L.
    Segall, K.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (21)
  • [30] Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
    Dey, Srijanie
    Dimitrov, Alexander
    FRONTIERS IN NEUROINFORMATICS, 2022, 16