C*-ALGEBRAS ASSOCIATED TO C*-CORRESPONDENCES AND APPLICATIONS TO MIRROR QUANTUM SPHERES

被引:3
作者
Robertson, David [1 ]
Szymanski, Wojciech [2 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[2] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
关键词
IDEAL STRUCTURE; NONCOMMUTATIVE BALLS; SIMPLICITY; GRAPHS;
D O I
10.1215/ijm/1369841788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of the C*-algebras corresponding to even-dimensional mirror quantum spheres is investigated. It is shown that they are isomorphic to both Cuntz-Pimsner algebras of certain C*-correspondences and C*-algebras of certain labelled graphs. In order to achieve this, categories of labelled graphs and C*-correspondences are studied. A functor from labelled graphs to C*-correspondences is constructed, such that the corresponding associated C*-algebras are isomorphic. Furthermore, it is shown that C*-correspondences for the mirror quantum spheres arise via a general construction of restricted direct sum.
引用
收藏
页码:845 / 870
页数:26
相关论文
共 25 条
[1]  
Bakic D., 2002, Mathematical Communications, V7, P177
[2]  
BAKIC D, 2003, GLAS MAT, V38, P341
[3]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[4]  
Bates T, 2007, J OPERAT THEOR, V57, P207
[5]  
Bates T, 2009, MATH SCAND, V104, P249
[6]  
Deicke K, 2003, INDIANA U MATH J, V52, P963
[7]   Computing K-theory and Ext for graph C*-algebras [J].
Drinen, D ;
Tomforde, M .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (01) :81-91
[8]   Representations of Cuntz-Pimsner algebras [J].
Fowler, NJ ;
Muhly, PS ;
Raeburn, I .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (03) :569-605
[9]   Noncommutative index theory for mirror quantum spheres [J].
Hajac, Piotr M. ;
Matthes, Rainer ;
Szymanski, Wojciech .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (11-12) :731-736
[10]   Fredholm modules for quantum Euclidean spheres [J].
Hawkins, E ;
Landi, G .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 49 (3-4) :272-293