Continuity of the solution mappings to parametric generalized strong vector equilibrium problems

被引:49
作者
Li, S. J. [1 ]
Liu, H. M. [1 ,2 ]
Zhang, Y. [1 ]
Fang, Z. M. [1 ,3 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Chongqing Univ, Coll Econ & Business Adm, Chongqing 400044, Peoples R China
[3] Chongqing Police Coll, Dept Criminal Invest, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Upper semicontinuity; Lower semicontinuity; Parametric generalized strong vector equilibrium problem; Scalarization; QUASI-VARIATIONAL INCLUSIONS; LOWER SEMICONTINUITY; SOLUTION SETS; EFFICIENT SOLUTIONS; INEQUALITY; STABILITY; SYSTEMS;
D O I
10.1007/s10898-012-9985-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we establish the upper semicontinuity and lower semicontinuity of solution mappings to a parametric generalized strong vector equilibrium problem with setvalued mappings by using a scalarization method and a density result. The results improve the corresponding ones in the literature. Some examples are given to illustrate our results.
引用
收藏
页码:597 / 610
页数:14
相关论文
共 21 条
[1]   Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems [J].
Anh, Lam Quoc ;
Khanh, Phan Quoc .
JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (04) :539-558
[2]   Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks 1: Upper semicontinuities [J].
Anh, Lam Quoc ;
Khanh, Phan Quoc .
SET-VALUED ANALYSIS, 2008, 16 (2-3) :267-279
[3]   Continuity of solution maps of parametric quasiequilibrium problems [J].
Anh, Lam Quoc ;
Khanh, Phan Quoc .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (02) :247-259
[4]  
Aubin J.P., 1994, Differential Inclusions
[5]  
Berge C., 1963, Topological Spaces, Including a Treatment of Multi -Valued Functions Vector Spaces and Convexity
[6]  
Chen CR, 2010, PAC J OPTIM, V6, P141
[7]   Solution semicontinuity of parametric generalized vector equilibrium problems [J].
Chen, C. R. ;
Li, S. J. ;
Teo, K. L. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 45 (02) :309-318
[8]   Global stability results for the weak vector variational inequality [J].
Cheng, YH ;
Zhu, DL .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 32 (04) :543-550
[9]   A MINIMAX THEOREM FOR VECTOR-VALUED FUNCTIONS [J].
FERRO, F .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (01) :19-31
[10]   Vector equilibrium problems. Existence theorems and convexity of solution set [J].
Fu, JY .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (01) :109-119