Vacuum deposited WO3 thin films based sub-ppm H2S sensor

被引:42
作者
Datta, Niyanta [1 ]
Ramgir, Niranjan [1 ]
Kaur, Manmeet [1 ]
Roy, Mainak [2 ]
Bhatt, Ranu [1 ]
Kailasaganapathi, S. [1 ]
Debnath, A. K. [1 ]
Aswal, D. K. [1 ]
Gupta, S. K. [1 ]
机构
[1] Bhabha Atom Res Ctr, Tech Phys Div, Thin Films Devices Sect, Bombay 400085, Maharashtra, India
[2] Bhabha Atom Res Ctr, Div Chem, Solid State Chem Sect, Bombay 400085, Maharashtra, India
关键词
Thin films; Vacuum deposition; Defects; Surface properties; GAS-SENSING CHARACTERISTICS; OPERATING TEMPERATURE; PHASE-TRANSITIONS; OXIDE SENSOR; TUNGSTEN; AU; NH3; NO; AMMONIA; ETHANOL;
D O I
10.1016/j.matchemphys.2012.03.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple method of vacuum deposition using W foils has been utilized to fabricate Au-incorporated WO3 thin film sensors. Incorporation of Au has been demonstrated to improve both the sensitivity and the selectivity of the sensor films towards H2S. The effect of operating temperature, Au loading and gas concentrations have been investigated and correlated with the observed sensitivity values to determine the optimum conditions for realizing H2S sensor with better sensing properties. The sensor film containing 2.32 at.% Au detected H2S selectively with an enhanced sensitivity of S = 16 (1 ppm) at an operating temperature of 250 degrees C. The enhanced response kinetics has been confirmed further using Raman and work function measurements. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:851 / 857
页数:7
相关论文
共 29 条
[1]   TUNGSTEN OXIDE-BASED SEMICONDUCTOR SENSOR HIGHLY SENSITIVE TO NO AND NO2 [J].
AKIYAMA, M ;
TAMAKI, J ;
MIURA, N ;
YAMAZOE, N .
CHEMISTRY LETTERS, 1991, (09) :1611-1614
[2]  
[Anonymous], 2001, POWD DIFFR FIL
[3]   WO3 sensor response according to operating temperature:: Experiment and modeling [J].
Bendahan, M. ;
Guerin, J. ;
Boulmani, R. ;
Aguir, K. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 124 (01) :24-29
[4]   Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content [J].
Cazzanelli, E ;
Vinegoni, C ;
Mariotto, G ;
Kuzmin, A ;
Purans, J .
SOLID STATE IONICS, 1999, 123 (1-4) :67-74
[5]   Infrared and Raman spectroscopy of WO3 and CdWO4 [J].
Gabrusenoks, J ;
Veispals, A ;
von Czarnowski, A ;
Meiwes-Broer, KH .
ELECTROCHIMICA ACTA, 2001, 46 (13-14) :2229-2231
[6]   Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors [J].
Ionescu, R ;
Hoel, A ;
Granqvist, CG ;
Llobet, E ;
Heszler, P .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 104 (01) :132-139
[7]   Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts [J].
Ippolito, SJ ;
Kandasamy, S ;
Kalantar-zadeh, K ;
Wlodarski, W .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 108 (1-2) :154-158
[8]   Metal ion-doped SnO2 ordered porous films and their strong gas sensing selectivity [J].
Jia, Lichao ;
Cai, Weiping ;
Wang, Hongqiang .
APPLIED PHYSICS LETTERS, 2010, 96 (10)
[9]   Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd [J].
Labidi, A. ;
Gillet, E. ;
Delamare, R. ;
Maaref, M. ;
Aguir, K. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 120 (01) :338-345
[10]   Raman study of thermochromic phase transition in tungsten trioxide nanowires [J].
Lu, Dong Yu ;
Chen, Jian ;
Chen, Huan Jun ;
Gong, Li ;
Deng, Shao Zhi ;
Xu, Ning Sheng ;
Liu, Yu Long .
APPLIED PHYSICS LETTERS, 2007, 90 (04)