Welschinger invariants of small non-toric Del Pezzo surfaces

被引:12
作者
Itenberg, Ilia [1 ,2 ]
Kharlamov, Viatcheslav [3 ,4 ]
Shustin, Eugenii [5 ]
机构
[1] Univ Paris 06, F-75252 Paris 5, France
[2] Inst Univ France, Inst Math Jussieu, F-75252 Paris 5, France
[3] Univ Strasbourg, F-67084 Strasbourg, France
[4] IRMA, F-67084 Strasbourg, France
[5] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
Tropical curves; real rational curves; enumerative geometry; Welschinger invariants; Caporaso-Harris formula; GROMOV-WITTEN INVARIANTS; ALGEBRAIC-GEOMETRY; PLANE-CURVES; REAL; ENUMERATION; FORMULA;
D O I
10.4171/JEMS/367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at q real and s <= 1 pairs of conjugate imaginary points, where q + 2s <= 5, and the real quadric blown up at s <= 1 pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil's recursive formula [ 22] for Gromov-Witten invariants of these surfaces and generalizes our recursive formula [ 12] for purely real Welschinger invariants of real toric Del Pezzo surfaces. As a consequence, we prove the positivity of the Welschinger invariants under consideration and their logarithmic asymptotic equivalence to genus zero Gromov-Witten invariants.
引用
收藏
页码:539 / 594
页数:56
相关论文
共 26 条
  • [1] Recursive Formulas for Welschinger Invariants of the Projective Plane
    Arroyo, Aubin
    Brugalle, Erwan
    Lopez de Medrano, Lucia
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (05) : 1107 - 1134
  • [2] Enumeration of curves via floor diagrams
    Brugalle, Erwan
    Mikhalkin, Grigory
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (06) : 329 - 334
  • [3] Counting plane curves of any genus
    Caporaso, L
    Harris, J
    [J]. INVENTIONES MATHEMATICAE, 1998, 131 (02) : 345 - 392
  • [4] The Caporaso-Harris formula and plane relative Gromov-Witten invariants in tropical geometry
    Gathmann, Andreas
    Markwig, Hannah
    [J]. MATHEMATISCHE ANNALEN, 2007, 338 (04) : 845 - 868
  • [5] The numbers of tropical plane curves through points in general position
    Gathmann, Andreas
    Markwig, Hannah
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 602 : 155 - 177
  • [6] Geometry of families of nodal curves on the blown-up projective plane
    Greuel, GM
    Lossen, C
    Shustin, E
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 251 - 274
  • [7] HIRSCHOWITZ A, 1989, J REINE ANGEW MATH, V397, P208
  • [8] Logarithmic equivalence of Welschinger and Gromov-Witten invariants
    Itenberg, I
    Kharlamov, V
    Shustin, E
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (06) : 1093 - 1116
  • [9] Logarithmic asymptotics of the genus zero Gromov-Witten invariants of the blown up plane
    Itenberg, I
    Kharlamov, V
    Shustin, E
    [J]. GEOMETRY & TOPOLOGY, 2005, 9 : 483 - 491
  • [10] Itenberg I, 2003, INT MATH RES NOTICES, V2003, P2639