Numerical integration in the DGFEM for 3D nonlinear convection-diffusion problems on nonconforming meshes

被引:3
作者
Sobotikova, Veronika [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Prague 16627 6, Czech Republic
关键词
discontinuous Galerkin finite element method; error estimates; nonlinear convection-diffusion equation; numerical integration; truncation error;
D O I
10.1080/01630560802279272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effect of numerical integration in a discontinuous Galerkin finite element method for a nonstationary nonlinear convection-diffusion problem in 3D is studied. In the space semidiscretization, the volume and surface integrals are evaluated with the aid of numerical quadratures. An estimate of the error caused by the numerical integration is presented, and it is shown what quadrature formulas guarantee preservation of the accuracy of the method with exact integration.
引用
收藏
页码:927 / 958
页数:32
相关论文
共 21 条
[1]  
Appell J, 1990, CAMBRIDGE TRACTS MAT, V95
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[4]  
Baumann CE, 1999, INT J NUMER METH FL, V31, P79, DOI 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO
[5]  
2-C
[6]  
Ciarlet P. G., 1979, FINITE ELEMENT METHO
[7]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[8]  
COCKBURN B, 2000, LECT NOTES COMPUTATI, V11
[9]  
COCKBURN B, 1999, LECT NOTES COMPUTATI, V9, P69
[10]   On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations [J].
Dolejsí, V .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (10) :1083-1106