An identity on pairs of Appell-type polynomials

被引:1
作者
Mihoubi, Miloud [1 ]
Saidi, Yamina [1 ]
机构
[1] USTHB, RECITS Lab, Fac Math, Algiers 16111, Algeria
关键词
BERNOULLI POLYNOMIALS; SEQUENCES; ORDER;
D O I
10.1016/j.crma.2015.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a sequence of polynomials P-n((alpha)) (x vertical bar A, H) depending only on the choice of two analytic functions A and H in a neighborhood of zero. For a pair of compositional inverses A and B, we will show the identity P-n((alpha)) (x vertical bar B, H o B) = P-n((n+1-alpha)) (1 - x vertical bar A, A'H), which generalize the Carlitz's identity on Bernoulli polynomials. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:773 / 778
页数:6
相关论文
共 10 条
[1]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[2]  
Carlitz L., 1979, Util. Math, V15, P51
[3]  
Comtet L., 1974, Advanced combinatorics
[4]  
Kurtz DC., 1972, J COMB THEORY A, V13, P135, DOI DOI 10.1016/0097-3165(72)90017-9
[5]   Bell polynomials and binomial type sequences [J].
Mihoubi, Miloud .
DISCRETE MATHEMATICS, 2008, 308 (12) :2450-2459
[6]  
PRABHAKAR TR, 1980, INDIAN J PURE AP MAT, V11, P1361
[7]  
ROMAN S, 2005, UMBRAL CALCULUS
[8]   On Appell sequences of polynomials of Bernoulli and Euler type [J].
Tempesta, Piergiulio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1295-1310
[9]   A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pinter addition theorem [J].
Tremblay, R. ;
Gaboury, S. ;
Fugere, B. -J. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1888-1893
[10]   Generalized higher order Bernoulli number pairs and generalized Stirling number pairs [J].
Wang, Weiping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) :255-274