Strongly modular models of Q-curves

被引:0
|
作者
Bruin, Peter [1 ]
Ferraguti, Andrea [2 ]
机构
[1] Leiden Univ, Math Inst, Postbus 9512, NL-2300 RA Leiden, Netherlands
[2] Univ Cambridge, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
基金
瑞士国家科学基金会;
关键词
Q-curves; quadratic twists; strong modularity; Galois cohomology; ABELIAN-VARIETIES; ELLIPTIC-CURVES;
D O I
10.1142/S179304211950026X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a Q-curve without complex multiplication. We address the problem of deciding whether E is geometrically isomorphic to a strongly modular Q-curve. We show that the question has a positive answer if and only if E has a model that is completely defined over an abelian number field. Next, if E is completely defined over a quadratic or biquadratic number field L, we classify all strongly modular twists of E over L in terms of the arithmetic of L. Moreover, we show how to determine which of these twists come, up to isogeny, from a subfield of L.
引用
收藏
页码:505 / 526
页数:22
相关论文
共 50 条
  • [21] Intermediate modular curves with infinitely many cubic points over Q
    Dalal, Tarun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (03) : 701 - 713
  • [22] HEEGNER POINTS ON MODULAR CURVES
    Cai, Li
    Chen, Yihua
    Liu, Yu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3721 - 3743
  • [23] Strongly Incompressible Curves
    Garcia-Armas, Mario
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03): : 541 - 570
  • [24] MODULAR CURVES WITH INFINITELY MANY QUARTIC POINTS
    Hwang, Wontae
    Jeon, Daeyeol
    MATHEMATICS OF COMPUTATION, 2023, : 383 - 395
  • [25] RADICAL ISOGENIES AND MODULAR CURVES
    Pribanic, Valentina
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (06) : 1748 - 1767
  • [26] CURVES IN HILBERT MODULAR VARIETIES
    Rousseau, Erwan
    Touzet, Frederic
    ASIAN JOURNAL OF MATHEMATICS, 2018, 22 (04) : 673 - 689
  • [27] An explicit correspondence of modular curves
    Chen, Imin
    Sharif, Parinaz Salari
    JOURNAL OF NUMBER THEORY, 2019, 200 : 185 - 204
  • [28] Bielliptic intermediate modular curves
    Jeon, Daeyeol
    Kim, Chang Heon
    Schweizer, Andreas
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 272 - 299
  • [29] Jacobians of Drinfeld modular curves
    Gekeler, EU
    Reversat, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 476 : 27 - 93
  • [30] QUADRATIC POINTS ON MODULAR CURVES
    Ozman, Ekin
    Siksek, Samir
    MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2461 - 2484