Strongly modular models of Q-curves

被引:0
|
作者
Bruin, Peter [1 ]
Ferraguti, Andrea [2 ]
机构
[1] Leiden Univ, Math Inst, Postbus 9512, NL-2300 RA Leiden, Netherlands
[2] Univ Cambridge, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
基金
瑞士国家科学基金会;
关键词
Q-curves; quadratic twists; strong modularity; Galois cohomology; ABELIAN-VARIETIES; ELLIPTIC-CURVES;
D O I
10.1142/S179304211950026X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a Q-curve without complex multiplication. We address the problem of deciding whether E is geometrically isomorphic to a strongly modular Q-curve. We show that the question has a positive answer if and only if E has a model that is completely defined over an abelian number field. Next, if E is completely defined over a quadratic or biquadratic number field L, we classify all strongly modular twists of E over L in terms of the arithmetic of L. Moreover, we show how to determine which of these twists come, up to isogeny, from a subfield of L.
引用
收藏
页码:505 / 526
页数:22
相关论文
共 50 条
  • [1] ON L-FUNCTIONS OF QUADRATIC Q-CURVES
    Bruin, Peter
    Ferraguti, Andrea
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 459 - 499
  • [2] The modularity of some Q-curves
    Roberts, BB
    Washington, LC
    COMPOSITIO MATHEMATICA, 1998, 111 (01) : 35 - 49
  • [3] Hyperelliptic parametrizations of Q-curves
    Bars, Francesc
    Gonzalez, Josep
    Xarles, Xavier
    RAMANUJAN JOURNAL, 2021, 56 (01) : 103 - 120
  • [4] Solving Fermat-type equations via modular Q-curves over polyquadratic fields
    Dieulefait, Luis
    Jimenez Urroz, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 183 - 195
  • [5] Q-curves and the Lebesgue-Nagell equation
    Bennett, Michael A.
    Michaud-Jacobs, Philippe
    Siksek, Samir
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 495 - 510
  • [6] THE MODULARITY OF Q-CURVES OF DEGREE 43
    Yamauchi, Takuya
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1025 - 1035
  • [7] Q-curves over odd degree number fields
    Cremona, J. E.
    Najman, Filip
    RESEARCH IN NUMBER THEORY, 2021, 7 (04)
  • [8] Families of Fast Elliptic Curves from Q-curves
    Smith, Benjamin
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013, PT I, 2013, 8269 : 61 - 78
  • [9] Q-CURVES, HECKE CHARACTERS, AND SOME DIOPHANTINE EQUATIONS II
    Pacetti, Ariel
    Torcomian, Lucas Villagra
    PUBLICACIONS MATEMATIQUES, 2023, 67 (02) : 569 - 599
  • [10] A p-ADIC CONSTRUCTION OF ATR POINTS ON Q-CURVES
    Guitart, Xavier
    Masdeu, Marc
    PUBLICACIONS MATEMATIQUES, 2015, 59 (02) : 511 - 545