Segal-Bargmann transforms associated with finite Coxeter groups

被引:26
作者
Ben Saïd, S
Orsted, B
机构
[1] Univ Nancy 1, Inst Elie Cartan, Dept Math, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Aarhus, Dept Math Sci, DK-8000 Aarhus C, Denmark
关键词
33C52; 43A85; 44A15;
D O I
10.1007/s00208-005-0718-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a polarization of a suitable restriction map, and heat-kernel analysis, we construct a generalized Segal-Bargmann transform associated with every finite Coxeter group G on RN. We find the integral representation of this transform, and we prove its unitarity. To define the Segal-Bargmann transform, we introduce a Hilbert space F-k(C-N) of holomorphic functions on C-N with reproducing kernel equal to the Dunkl-kernel. The definition and properties of F-k(C-N) extend naturally those of the well-known classical Fock space. The generalized Segal-Bargmann transform allows to exhibit some relationships between the Dunkl theory in the Schrodinger model and in the Fock model. Further, we prove a branching decomposition of F-k(C-N) as a unitary G x SL(2, R)-module and a general version of Hecke's formula for the Dunkl transform.
引用
收藏
页码:281 / 323
页数:43
相关论文
共 44 条