Multivariable Robust Control of the Plasma Rotational Transform Profile for Advanced Tokamak Scenarios in DIII-D

被引:0
作者
Shi, Wenyu [1 ]
Wehner, William [1 ]
Barton, Justin [1 ]
Boyer, Mark D. [1 ]
Schuster, Eugenio [1 ]
Moreau, Didier [2 ]
Luce, Tim C. [3 ]
Ferron, John R. [3 ]
Walker, Michael L. [3 ]
Humphreys, David A. [3 ]
Penaflor, Ben G. [3 ]
Johnson, Robert D. [3 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[2] CEA, IRFM, F-13108 St Paul Les Durance, France
[3] Gen Atom, San Diego, CA 92121 USA
来源
2012 AMERICAN CONTROL CONFERENCE (ACC) | 2012年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tokamak is a high order, distributed parameter, nonlinear system with a large number of instabilities. Therefore, accurate theoretical plasma models are difficult to develop. However, linear plasma response models around a particular equilibrium can be developed by using data-driven modeling techniques. This paper introduces a linear model of the rotational transform iota profile evolution based on experimental data from the DIII-D tokamak. The model represents the response of the i profile to the electric field due to induction as well as to heating and current drive (H&CD) systems. The control goal is to use both induction and H&CD systems to regulate the plasma i profile around a particular target profile. A singular value decomposition (SVD) of the plasma model at steady state is carried out to decouple the system and identify the most relevant control channels. A mixed sensitivity H control design problem is formulated to synthesize a stabilizing feedback controller without input constraint that minimizes the reference tracking error and rejects external disturbances with minimal control energy. The feedback controller is then augmented with an anti-windup compensator, which keeps the given profile controller well-behaved in the presence of magnitude constraints in the actuators and leaves the nominal closed-loop unmodified when no saturation is present. Finally, computer simulations and experimental results illustrate the performance of the model-based profile controller.
引用
收藏
页码:5037 / 5042
页数:6
相关论文
共 12 条
  • [1] Optimal steady-state control for linear non-right-invertible systems
    Ambrosino, G.
    Ariola, M.
    Pironti, A.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (03) : 604 - 610
  • [2] Design and Implementation of an Output Regulation Controller for the JET Tokamak
    Ambrosino, Giuseppe
    Ariola, Marco
    Pironti, Alfredo
    Sartori, Filippo
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (06) : 1101 - 1111
  • [3] [Anonymous], 1999, SYSTEM IDENTIFICATIO
  • [4] Feedback control of the safety factor profille evolution during formation of an advanced tokamak discharge
    Ferron, J. R.
    Gohill, P.
    Greenfield, C. M.
    Lohr, J.
    Luce, T. C.
    Makowski, M. A.
    Mazon, D.
    Murakami, M.
    Petty, C. C.
    Politzer, P. A.
    Wade, M. R.
    [J]. NUCLEAR FUSION, 2006, 46 (10) : L13 - L17
  • [5] Plasma models for real-time control of advanced tokamak scenarios
    Moreau, D.
    Mazon, D.
    Walker, M. L.
    Ferron, J. R.
    Burrell, K. H.
    Flanagan, S. M.
    Gohil, P.
    Groebner, R. J.
    Hyatt, A. W.
    La Haye, R. J.
    Lohr, J.
    Turco, F.
    Schuster, E.
    Ou, Y.
    Xu, C.
    Takase, Y.
    Sakamoto, Y.
    Ide, S.
    Suzuki, T.
    [J]. NUCLEAR FUSION, 2011, 51 (06)
  • [6] A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET
    Moreau, D.
    Mazon, D.
    Ariola, M.
    De Tommasi, G.
    Laborde, L.
    Piccolo, F.
    Sartori, F.
    Tala, T.
    Zabeo, L.
    Boboc, A.
    Bouvier, E.
    Brix, M.
    Brzozowski, J.
    Challis, C. D.
    Cocilovo, V.
    Cordoliani, V.
    Crisanti, F.
    De la Luna, E.
    Felton, R.
    Hawkes, N.
    King, R.
    Litaudon, X.
    Loarer, T.
    Mailloux, J.
    Mayoral, M.
    Nunes, I.
    Surrey, E.
    Zimmerman, O.
    [J]. NUCLEAR FUSION, 2008, 48 (10)
  • [7] Pironti A., 2005, IEEE Control Systems Magazine, V25, P24, DOI 10.1109/MCS.2005.1512793
  • [8] Schuster E, 2003, P 2003 IEEE INT C DE
  • [9] Skogested S., 2003, Multivariable Feedback Control
  • [10] Teel A. R., 2004, IEEE T AUTOMATIC CON