L-functions of symmetric products of the Kloosterman sheaf over Z

被引:9
作者
Fu, Lei [1 ,2 ]
Wan, Daqing [3 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00208-008-0240-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical n-variable Kloosterman sums over the finite field F(p) give rise to a lisse (Q(l)) over bar -sheaf Kl(n+1) on G(m,Fp) = P(Fp)(1) - {0, infinity}, which we call the Kloosterman sheaf. Let L(p)(G(m,Fp), Sym(k)Kl(n+1), s) be the L-function of the k-fold symmetric product of Kl(n+1). We construct an explicit virtual scheme X of finite type over Spec Z such that the p-Euler factor of the zeta function of X coincides with L(p)(G(m,Fp), Sym(k)Kl(n+1), s). We also prove similar results for circle times(k)Kl(n+1) and Lambda(k) Kl(n+1).
引用
收藏
页码:387 / 404
页数:18
相关论文
共 14 条
[1]   Congruences for sums of powers of Kloosterman sums [J].
Choi, H. Timothy ;
Evans, Ronald .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (01) :105-117
[2]  
Deligne P., 1977, Lecture Notes in Math., V569
[3]  
EVANS R, 7 POWER MOM IN PRESS
[4]  
Fu L, 2005, J REINE ANGEW MATH, V589, P79
[5]  
Fulton W., 2004, REPRESENT THEOR, V129
[6]  
Grosse-Klonne Elmar, 2003, DOC MATH, V8, P1
[7]  
Grothendieck A., 1957, Tohoku Math. J., V9, P119, DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
[8]   The modularity of the Barth-Nieto quintic and its relatives [J].
Hulek, K. ;
Spandaw, J. ;
van Geemen, B. ;
van Straten, D. .
ADVANCES IN GEOMETRY, 2001, 1 (03) :263-289
[9]  
Katz N M., 1988, ANN MATH STUD
[10]  
Laumon G., 1987, Publ. Math. Inst. Hautes Etudes Sci., V65, P131