A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (∼20 nm) for lithium ion batteries with superior high-rate performance

被引:48
作者
Liu, Zhimin [1 ,2 ]
Zhang, Naiqing [1 ,3 ]
Sun, Kening [1 ,3 ]
机构
[1] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
关键词
ANODE MATERIAL; SPINEL; INSERTION; OXIDES; CELLS;
D O I
10.1039/c2jm31066j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we develop a novel strategy to synthesize Li4Ti5O12 by employing a triblock copolymer (F127) as the chelating agent and particle-restraint reagent. X-ray diffraction, Raman spectrum, nitrogen adsorption-desorption, scanning electron microscopy and high resolution transmission electron microscopy measurements are performed to characterize the structures and morphologies of the as-derived samples. Highly crystallized and pure-phase Li4Ti5O12 is synthesized at a low calcination temperature of 750 degrees C, owing to the effective complexation of F127 with Ti+ and Li+ through coordination bonds. Moreover, the grain growth of Li4Ti5O12 is effectively restrained by the carbon generated from the carbonization of F127 in the calcination process, and a small particle size of Li4Ti5O12 (similar to 20 nm) is successfully obtained. The electrical conductivity is enhanced to 8.2 x 10(-3)S m(-1) due to the formed carbon-network on the surface of the sample. The as-derived nanocrystalline Li4Ti5O12 is tested as the anode material for lithium ion batteries, exhibiting excellent reversible capacities of 166, 160, 155, 139 and 123 mA h g(-1) at current densities of 1 C, 5 C, 10 C, 20 C and 40 C, respectively. The cell also demonstrates good capacity retentions and high coulombic efficiencies (similar to 100%) at all current rates. The excellent electrochemical performance makes our Li4Ti5O12 a promising anode material for high energy/power density lithium ion batteries.
引用
收藏
页码:11688 / 11693
页数:6
相关论文
共 28 条
[1]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[2]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Fast sol-gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application [J].
Beninati, Sabina ;
Damen, Libero ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :1094-1098
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Cr and Ni Doping of Li4Ti5O12: Cation Distribution and Functional Properties [J].
Capsoni, Doretta ;
Bini, Marcella ;
Massarotti, Vincenzo ;
Mustarelli, Piercarlo ;
Ferrari, Stefania ;
Chiodelli, Gaetano ;
Mozzati, Maria Cristina ;
Galinetto, Pietro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) :19664-19671
[7]   General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Yan, Jing ;
Zhu, Guan-Nan ;
Luo, Jia-Yan ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (03) :595-602
[8]   STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LITI2O4 AND LI4/3TI5/3O4 [J].
COLBOW, KM ;
DAHN, JR ;
HAERING, RR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :397-402
[9]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[10]   Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J].
Huang, SH ;
Wen, ZY ;
Zhu, XJ ;
Gu, ZH .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (11) :1093-1097