Mechanism of strand displacement synthesis by DNA replicative polymerases

被引:58
作者
Manosas, Maria [1 ,2 ,3 ]
Spiering, Michelle M. [4 ]
Ding, Fangyuan [1 ,5 ]
Bensimon, David [1 ,5 ,6 ]
Allemand, Jean-Francois [1 ,5 ]
Benkovic, Stephen J. [4 ]
Croquette, Vincent [1 ,5 ]
机构
[1] Univ Paris Diderot, Dept Phys, Lab Phys Stat, Ecole Normale Super,Univ Paris 06,CNRS, F-75005 Paris, France
[2] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[3] Inst Sanidad Carlos III, CIBER BBN Bioingn Biomat & Nanomed, Madrid 28029, Spain
[4] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[5] Ecole Normale Super, Dept Biol, F-75005 Paris, France
[6] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
SINGLE-MOLECULE; UNWINDING MECHANISM; ATP HYDROLYSIS; BACTERIOPHAGE-T4; HELICASE; COMPLEX; SITE; HOLOENZYME; ELONGATION; DEFICIENT;
D O I
10.1093/nar/gks253
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing.
引用
收藏
页码:6174 / 6186
页数:13
相关论文
共 35 条
[1]   Replisome-mediated DNA replication [J].
Benkovic, SJ ;
Valentine, AM ;
Salinas, F .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :181-208
[2]   Mechanical processes in biochemistry [J].
Bustamante, C ;
Chemla, YR ;
Forde, NR ;
Izhaky, D .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :705-748
[3]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[4]   DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase [J].
da Silva, Elizabeth Fidalgo ;
Reha-Krantz, Linda J. .
NUCLEIC ACIDS RESEARCH, 2007, 35 (16) :5452-5463
[5]   Single-molecule assay reveals strand switching and enhanced processivity of UvrD [J].
Dessinges, MN ;
Lionnet, T ;
Xi, XG ;
Bensimon, D ;
Croquette, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6439-6444
[6]   RNA translocation and unwinding mechanism of HCVNS3 helicase and its coordination by ATP [J].
Dumont, S ;
Cheng, W ;
Serebrov, V ;
Beran, RK ;
Tinoco, I ;
Pyle, AM ;
Bustamante, C .
NATURE, 2006, 439 (7072) :105-108
[7]   Structure of the replicating complex of a pol α family DNA polymerase [J].
Franklin, MC ;
Wang, JM ;
Steitz, TA .
CELL, 2001, 105 (05) :657-667
[8]   CONSTRUCTION AND CHARACTERIZATION OF A BACTERIOPHAGE-T4 DNA-POLYMERASE DEFICIENT IN 3'-]5' EXONUCLEASE ACTIVITY [J].
FREY, MW ;
NOSSAL, NG ;
CAPSON, TL ;
BENKOVIC, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2579-2583
[9]   Magnetic tweezers: Micromanipulation and force measurement at the molecular level [J].
Gosse, C ;
Croquette, V .
BIOPHYSICAL JOURNAL, 2002, 82 (06) :3314-3329
[10]   Single-molecule, motion-based DNA sequencing using RNA polymerase [J].
Greenleaf, William J. ;
Block, Steven M. .
SCIENCE, 2006, 313 (5788) :801-801