Fast and robust shape diameter function

被引:6
作者
Chen, Shuangmin [1 ]
Liu, Taijun [1 ]
Shu, Zhenyu [2 ]
Xin, Shiqing [3 ]
He, Ying [4 ]
Tu, Changhe [3 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Inst Technol, Sch Informat Sci & Engn, Ningbo, Zhejiang, Peoples R China
[3] Shandong Univ, Sch Comp Sci & Technol, Qingdao, Shandong, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
UNSUPERVISED CO-SEGMENTATION; 3D SHAPES; RETRIEVAL;
D O I
10.1371/journal.pone.0190666
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input D it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
引用
收藏
页数:18
相关论文
共 40 条
[1]  
[Anonymous], 2011, PROC EUROGRAPHICS 20, P79, DOI DOI 10.2312/3DOR/3DOR11/079-088
[2]   Content-based retrieval of 3-D objects using Spin Image Signatures [J].
Assfalg, Juergen ;
Bertini, Marco ;
Del Bimbo, Alberto ;
Pala, Pietro .
IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (03) :589-599
[3]  
Aubry M, 2011, IEEE I CONF COMP VIS, P1411, DOI 10.1109/ICCV.2011.6126396
[4]  
Belongie Serge, 2000, SHAPE CONTEXT NEW DE, P831
[5]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[6]   Scale-invariant heat kernel signatures for non-rigid shape recognition [J].
Bronstein, Michael M. ;
Kokkinos, Iasonas .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1704-1711
[7]   Point Morphology [J].
Calderon, Stephane ;
Boubekeur, Tamy .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[8]   On visual similarity based 3D model retrieval [J].
Chen, DY ;
Tian, XP ;
Shen, YT ;
Ming, OY .
COMPUTER GRAPHICS FORUM, 2003, 22 (03) :223-232
[9]   Noise Brush: Interactive High Quality Image-Noise Separation [J].
Chen, Jia ;
Tang, Chi-Keung ;
Wang, Jue .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05) :1-10
[10]   Uniform offsetting of polygonal model based on Layered Depth-Normal Images [J].
Chen, Yong ;
Wang, Charlie C. L. .
COMPUTER-AIDED DESIGN, 2011, 43 (01) :31-46