Affine processes on positive semidefinite d x d matrices have jumps of finite variation in dimension d > 1

被引:9
作者
Mayerhofer, Eberhard [1 ]
机构
[1] Deutsch Bundesbank, D-60431 Frankfurt, Germany
关键词
Affine processes; Positive semidefinite processes; Jumps; Wishart processes;
D O I
10.1016/j.spa.2012.06.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The theory of affine processes on the space of positive semidefinite d x d matrices has been established in a joint work with Cuchiero et al. (2011) [4]. We confirm the conjecture stated therein that in dimension d > 1 this process class does not exhibit jumps of infinite total variation. This constitutes a geometric phenomenon which is in contrast to the situation on the positive real line (Kawazu and Watanabe, 1971) [8]. As an application we prove that the exponentially affine property of the Laplace transform carries over to the Fourier-Laplace transform if the diffusion coefficient is zero or invertible. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3445 / 3459
页数:15
相关论文
共 14 条
[1]  
Ahdida A., 2010, FREIMANS CONJECTURE
[2]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[3]  
Barndorff-Nielsen O.E., 2007, Probab. Math. Statist., V27, P3
[4]  
Bru M., 1991, J. Theor. Probab, V4, P725, DOI [/10.1007/BF01259552, DOI 10.1007/BF01259552]
[5]   AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES [J].
Cuchiero, Christa ;
Filipovic, Damir ;
Mayerhofer, Eberhard ;
Teichmann, Josef .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (02) :397-463
[6]  
Duffie D, 2003, ANN APPL PROBAB, V13, P984
[7]   Risk and valuation of collateralized debt obligations [J].
Duffie, D ;
Gârleanu, N .
FINANCIAL ANALYSTS JOURNAL, 2001, 57 (01) :41-59
[8]  
Filipovic D, 2009, RADON SER COMPUT APP, V8, P125
[9]   On convexity of solutions of ordinary differential equations [J].
Keller-Ressel, M. ;
Mayerhofer, E. ;
Smirnov, A. G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) :247-253
[10]  
Keller-Ressel M., 2009, Affine Processes-Theory and Applications in Finance