ON THE BEILINSON-HODGE CONJECTURE FOR H2 AND RATIONAL VARIETIES

被引:0
作者
Chatzistamatiou, Andre [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math, D-45117 Essen, Germany
关键词
NOETHER-LEFSCHETZ LOCUS; HIGHER CHOW GROUPS; CYCLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Beilinson-Hodge conjecture asserts the surjectivity of the cycle map H-M(n) (X, Q(n)) -> Hom(MHS)(Q(-n), H-n(X, Q)), for all integers n >= 1 and every smooth complex algebraic variety X. For n = 2, we prove the conjecture if X is rational.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 18 条
[1]  
Arapura D, 2009, MATH RES LETT, V16, P557
[2]   Noether-Lefschetz locus for Beilinson-Hodge cycles I [J].
Asakura, M ;
Saito, S .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) :251-273
[3]  
Asakura M., 2007, LONDON MATH SOC LECT, V2, P3
[4]   Maximal components of Noether-Lefschetz locus for Beilinson-Hodge cycles [J].
Asakura, Masanori ;
Saito, Shuji .
MATHEMATISCHE ANNALEN, 2008, 341 (01) :169-199
[5]  
Beilinson A., 1986, Contemp. Math., V55, P35
[6]  
Bloch BO74 Spencer, 1974, Ann. Sci. Ecole Norm. Sup. 4, P181
[7]   REMARKS ON CORRESPONDENCES AND ALGEBRAIC CYCLES [J].
BLOCH, S ;
SRINIVAS, V .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (05) :1235-1253
[8]  
de Jeu R., ARXIV11044364V1
[9]  
Esnault H., 1988, PERSPECTIVES MATH, V4, P43
[10]   Realization of Voevodsky's motives (vol 9, pg 755, 2000) [J].
Huber, A .
JOURNAL OF ALGEBRAIC GEOMETRY, 2004, 13 (01) :195-207