Tame stacks in positive characteristic

被引:141
作者
Abramovich, Dan [1 ]
Olsson, Martin
Vistoli, Angelo
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
algebraic stacks; moduli spaces; group schemes;
D O I
10.5802/aif.2378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are etale locally quotient by actions of linearly reductive finite group schemes.
引用
收藏
页码:1057 / 1091
页数:35
相关论文
共 39 条
[1]   Twisted bundles and admissible covers [J].
Abramovich, D ;
Corti, A ;
Vistoli, A .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) :3547-3618
[2]   Compactifying the space of stable maps [J].
Abramovich, D ;
Vistoli, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :27-75
[3]  
ABRAMOVICH D, GROMOV WITTEN THEORY
[4]   VERSAL DEFORMATIONS AND ALGEBRAIC STACKS [J].
ARTIN, M .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :165-189
[5]  
BEHREND K, J REINE ANG IN PRESS
[6]  
Conrad B., KEEL MORI THEOREM VI
[7]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75
[8]  
Demazure M., 1970, LECT NOTES MATH, V152
[9]  
Demazure M., 1970, LECT NOTES MATH, V153
[10]  
Demazure M., 1970, LECT NOTES MATH, V151-153