Computation of 3D vertex singularities for linear elasticity:: Error estimates for a finite element method on graded meshes

被引:21
作者
Apel, T [1 ]
Sändig, AM
Solov'ev, SI
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Univ Stuttgart, Inst Math, D-70511 Stuttgart, Germany
[3] Kazan VI Lenin State Univ, Fac Comp Sci & Cybernet, Kazan 420008, Russia
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2002年 / 36卷 / 06期
关键词
quadratic eigenvalue problems; linear elasticity; 3D vertex singularities; finite element methods; error estimates;
D O I
10.1051/m2an:2003005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear forms and a skew-Hermitean form. This eigenvalue problem is discretized by a finite element method on graded meshes. Based on regularity results for the eigensolutions estimates for the finite element error are derived both for the eigenvalues and the eigensolutions. Finally, some numerical results are presented.
引用
收藏
页码:1043 / 1070
页数:28
相关论文
共 20 条
  • [1] An augmented mixed finite element method for 3D linear elasticity problems
    Gatica, Gabriel N.
    Marquez, Antonio
    Meddahi, Salim
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 526 - 540
  • [2] A finite element method for 3D exterior oseen flows: Error estimates
    Deuring, Paul
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) : 1517 - 1543
  • [3] A NEW MIXED FINITE ELEMENT FOR THE LINEAR ELASTICITY PROBLEM IN 3D*
    Hu, Jun
    Ma, Rui
    Sun, Yuanxun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024,
  • [4] Generalized mixed finite element method for 3D elasticity problems
    Qing, Guanghui
    Mao, Junhui
    Liu, Yanhong
    ACTA MECHANICA SINICA, 2018, 34 (02) : 371 - 380
  • [5] HIGHLY ACCURATE NONCOMPATIBLE GENERALIZED MIXED FINITE ELEMENT METHOD FOR 3D ELASTICITY PROBLEMS
    Qing, Guanghui
    Mao, Junhui
    Liu, Yanhong
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2017, 12 (04) : 505 - 519
  • [6] Parameterized template meshes for 2D and 3D finite element modeling
    Rodger, D
    Hill-Cottingham, RJ
    Vong, PK
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1610 - 1614
  • [7] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [8] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073
  • [9] Stability and Convergence of Spectral Mixed Discontinuous Galerkin Methods for 3D Linear Elasticity on Anisotropic Geometric Meshes
    Wihler, Thomas P.
    Wirz, Marcel
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
  • [10] High order interface-penalty finite element methods for elasticity interface in 3D
    Zhang, Xiaodi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 : 161 - 170