Vertex-edge domination in graphs

被引:40
作者
Boutrig, Razika [1 ,2 ]
Chellali, Mustapha [2 ]
Haynes, Teresa W. [3 ,4 ]
Hedetniemi, Stephen T. [5 ]
机构
[1] Univ Boumerdes, Fac Econ Sci & Management, Boumerdas, Algeria
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[4] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[5] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
关键词
Vertex-edge domination; domination; tree;
D O I
10.1007/s00010-015-0354-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K (1,k) -free graph, with k a parts per thousand yen 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C (5)-free graphs, improving a recent bound given for trees.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 5 条
  • [1] Cockayne E.J., 1978, Canad. Math. Bull., V21, P461
  • [2] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [3] Lewis J.R., 2007, THESIS CLEMSON U CLE
  • [4] Lewis J, 2010, UTILITAS MATHEMATICA, V81, P193
  • [5] Peters J.W., 1986, Theoretical and Algorithmic Results on Domination and Connectivity