Uniqueness and parameter dependence of solutions of second-order boundary value problems

被引:9
|
作者
Kong, Lingju [1 ]
Kong, Qingkai [2 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
Positive solutions; Boundary value problems; Uniqueness; Dependence on parameters; Normal solid cones; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS; CRITERIA;
D O I
10.1016/j.aml.2009.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem with nonhomogeneous multi-point boundary condition u '' + a(t)f(u) = 0, t is an element of (0, 1), u(0) = Sigma(m)(i=1) a(i)u(t(i)) + lambda, u(1) = Sigma(m)(i=1) b(i)u(t(i)) + mu. A sufficient condition is obtained for the existence and uniqueness of a positive solution. The dependence of the solution on the parameters lambda and mu is also studied. Our work complements some results in the literature, especially those in our earlier papers [L Kong, Q. Kong, Second-order boundary value problems with non homogeneous boundary conditions I, Math. Nachr. 278 (2005) 173-193; L Kong, Q. Kong, Second-order boundary value problems with nonhomogeneous boundary conditions II, J. Math. Anal. Appl. 330 (2007) 1393-1411]. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1633 / 1638
页数:6
相关论文
共 50 条