On the number of linear spaces on hypersurfaces with a prescribed discriminant

被引:1
|
作者
Brandes, Julia [1 ,2 ,3 ]
机构
[1] Chalmers Inst Technol, Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
[3] Univ Waterloo, Pure Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Forms in many variables; Linear spaces; FORMS; VARIABLES; SYSTEMS; SOLUBILITY; EQUATIONS;
D O I
10.1007/s00209-017-1975-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given form we apply the circle method in order to give an asymptotic estimate of the number of m-tuples spanning a linear space on the hypersurface with the property that . This allows us in some measure to count rational linear spaces on hypersurfaces whose underlying integer lattice is primitive.
引用
收藏
页码:803 / 827
页数:25
相关论文
共 50 条