Unlifted loop subdivision wavelets

被引:0
作者
Li, DG [1 ]
Qin, KH [1 ]
Sun, HQ [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
12TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we propose a new wavelet scheme for Loop subdivision surfaces. The main idea enabling our wavelet construction is to extend the subdivision rules to be invertible, thus executing each inverse subdivision step in the reverse order makes up the wavelet decomposition rule. As apposed to other existing wavelet schemes for Loop surfaces, which require solving a global sparse linear system in the wavelet analysis process, our wavelet scheme provides efficient (linear time and fully in-place) computations for both forward and backward wavelet transforms. This characteristic makes our wavelet scheme extremely suitable for applications in which the speed for wavelet decomposition is critical. We also describe our strategies for optimizing free parameters in the extended subdivision steps, which are important to the performance of the final wavelet transform. Our method has been proven to be effective, as demonstrated by a number of examples.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 20 条
[1]   Biorthogonal loop-subdivision wavelets [J].
Bertram, M .
COMPUTING, 2004, 72 (1-2) :29-39
[2]   Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization [J].
Bertram, M ;
Duchaineau, MA ;
Hamann, B ;
Joy, KI .
VISUALIZATION 2000, PROCEEDINGS, 2000, :389-396
[3]  
Boehm W., 1985, Computer-Aided Geometric Design, V2, P61, DOI 10.1016/0167-8396(85)90008-1
[4]   A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL [J].
DYN, N ;
LEVIN, D ;
GREGORY, JA .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02) :160-169
[5]  
Eck M., 1995, P 22 ANN C COMPUTER, P173, DOI DOI 10.1145/218380.218440
[6]  
Guskov I, 1999, COMP GRAPH, P325, DOI 10.1145/311535.311577
[7]  
Hoppe H., 1994, P SIGGRAPH 94, P295, DOI DOI 10.1145/192161.192233
[8]  
Khodakovsky A, 2000, COMP GRAPH, P271, DOI 10.1145/344779.344922
[9]  
KHODAKOVSKY A, PROGRESSIVE GEOMETRY
[10]  
LEE AWF, 1998, P SIGGRAPH 98, P95, DOI DOI 10.1145/280814.280828