Integrability of Poisson-Lie Group Actions

被引:12
作者
Fernandes, Rui Loja [1 ]
Iglesias Ponte, David [2 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] CSIC, Inst Ciencias Matemat, UAM, UCM,UC3M, E-28006 Madrid, Spain
关键词
Poisson actions; twisted multiplicative; integrability; HOMOGENEOUS SPACES; SYMPLECTIC GROUPOIDS; INTEGRATION; BRACKETS;
D O I
10.1007/s11005-009-0348-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a 1:1 correspondence between Poisson-Lie group actions on integrable Poisson manifolds and twisted multiplicative Hamiltonian actions on source 1-connected symplectic groupoids. For an action of a Poisson-Lie group G on a Poisson manifold M, we find an explicit description of the lifted Hamiltonian action on the symplectic groupoid I (M) pound. We give applications of these results to the integration of Poisson quotients M/G, Lu-Weinstein quotients mu(-1)(e)/G and Poisson homogeneous spaces G/H.
引用
收藏
页码:137 / 159
页数:23
相关论文
共 20 条
[1]  
Alekseev AY, 1997, J DIFFER GEOM, V45, P241
[2]   On the integration of Poisson homogeneous spaces [J].
Bonechi, Francesco ;
Ciccoli, Nicola ;
Staffolani, Nicola ;
Tarlini, Marco .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (11) :1519-1529
[3]   Gauge equivalence of Dirac structures and symplectic groupoids [J].
Bursztyn, H ;
Radko, O .
ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) :309-+
[4]  
Crainic M, 2004, J DIFFER GEOM, V66, P71
[5]   Integrability of Lie brackets [J].
Crainic, M ;
Fernandes, RL .
ANNALS OF MATHEMATICS, 2003, 157 (02) :575-620
[6]   ON POISSON HOMOGENEOUS SPACES OF POISSON-LIE GROUPS [J].
DRINFELD, VG .
THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) :524-525
[7]  
Ginzburg Viktor L., 1992, J AM MATH SOC, V5, P445, DOI [/10.2307/2152773, DOI 10.2307/2152773]
[8]  
Lu J.-H., 1990, PhD thesis
[9]   Poisson homogeneous spaces and Lie algebroids associated to Poisson actions [J].
Lu, JH .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :261-304
[10]  
LU JH, 1991, MATH SCI R, V20, P209