Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu

被引:144
作者
Pauly, Simon [1 ]
Wang, Pei [1 ]
Kuehn, Uta [1 ]
Kosiba, Konrad [1 ]
机构
[1] IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany
关键词
Selective laser melting; Al-33Cu; Lamellar spacing; Cooling rate; Volumetric energy density; THERMAL-BEHAVIOR; RAPID SOLIDIFICATION; METALLIC GLASSES; ENERGY DENSITY; MICROSTRUCTURE; DEPOSITION; DESIGN; ALLOYS; SUPERALLOY; MECHANISMS;
D O I
10.1016/j.addma.2018.05.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cooling rates inherent to selective laser melting (SLM) were experimentally determined by processing the eutectic Al-33Cu (wt.%) alloy. Two different parameter sets yielding an identical volumetric energy density were employed to produce the samples. Based on the average spacing of the Al and CuAl2 lamellae, the cooling rates in different parts of the SLM specimens were estimated. At a high laser power (300 W) the cooling rate amounts to 10(4) K/s and at the lower laser power (200 W) to 10(5) K/s. The present approach proves to be useful for exploring the thermal history of additively manufactured metallic components.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 34 条
[1]   On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting [J].
Bertoli, Umberto Scipioni ;
Wolfer, Alexander J. ;
Matthews, Manyalibo J. ;
Delplanque, Jean-Pierre R. ;
Schoenung, Julie M. .
MATERIALS & DESIGN, 2017, 113 :331-340
[2]  
BURDEN MH, 1970, J I MET, V98, P249
[3]   In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system [J].
Clijsters, S. ;
Craeghs, T. ;
Buls, S. ;
Kempen, K. ;
Kruth, J-P. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 75 (5-8) :1089-1101
[4]   Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material [J].
Dai, Donghua ;
Gu, Dongdong ;
Poprawe, Reinhart ;
Xia, Mujian .
SCIENCE BULLETIN, 2017, 62 (11) :779-787
[5]   Understanding thermal behavior in the LENS process [J].
Griffith, ML ;
Schlienger, ME ;
Harwell, LD ;
Oliver, MS ;
Baldwin, MD ;
Ensz, MT ;
Essien, M ;
Brooks, J ;
Robino, CV ;
Smugeresky, JE ;
Hofmeister, WH ;
Wert, MJ ;
Nelson, DV .
MATERIALS & DESIGN, 1999, 20 (2-3) :107-113
[6]   Laser additive manufacturing of metallic components: materials, processes and mechanisms [J].
Gu, D. D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) :133-164
[7]   Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach [J].
Harrison, Neil J. ;
Todd, Iain ;
Mumtaz, Kamran .
ACTA MATERIALIA, 2015, 94 :59-68
[8]   Solidification in direct metal deposition by LENS processing [J].
Hofmeister, W ;
Griffith, M ;
Ensz, M ;
Smugeresky, J .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2001, 53 (09) :30-34
[9]   Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg [J].
Hu, Hongwei ;
Ding, Xueping ;
Wang, Linzhi .
OPTIK, 2016, 127 (20) :8883-8891
[10]  
JACKSON KA, 1966, T METALL SOC AIME, V236, P1129